Skip to main content

Discovering Geographic Regions in the City Using Social Multimedia and Open Data

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10133))

Included in the following conference series:

  • 1854 Accesses

Abstract

In this paper we investigate the potential of social multimedia and open data for automatically identifying regions within the city. We conjecture that the regions may be characterized by specific patterns related to their visual appearance, the manner in which the social media users describe them, and the human mobility patterns. Therefore, we collect a dataset of Foursquare venues, their associated images and users, which we further enrich with a collection of city-specific Flickr images, annotations and users. Additionally, we collect a large number of neighbourhood statistics related to e.g., demographics, housing and services. We then represent visual content of the images using a large set of semantic concepts output by a convolutional neural network and extract latent Dirichlet topics from their annotations. User, text and visual information as well as the neighbourhood statistics are further aggregated at the level of postal code regions, which we use as the basis for detecting larger regions in the city. To identify those regions, we perform clustering based on individual modalities as well as their ensemble. The experimental analysis shows that the automatically detected regions are meaningful and have a potential for better understanding dynamics and complexity of a city.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.amsterdam.info/basics/figures/.

References

  1. Andrienko, N., Andrienko, G., Fuchs, G., Jankowski, P.: Scalable and privacy-respectful interactive discovery of place semantics from human mobility traces. Inf. Vis. 15(2), 117–153 (2016)

    Article  Google Scholar 

  2. Boureau, Y.-L., Ponce, J., LeCun, Y.: A theoretical analysis of feature pooling in visual recognition. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 111–118 (2010)

    Google Scholar 

  3. Cranshaw, J., Schwartz, R., Hong, J., Sadeh, N.: The livehoods project: utilizing social media to understand the dynamics of a city. In: International AAAI Conference on Weblogs and Social Media (2012)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255, June 2009

    Google Scholar 

  5. Fang, Q., Sang, J., Xu, C.: Giant: geo-informative attributes for location recognition and exploration. In: Proceedings of the 21st ACM International Conference on Multimedia, MM 2013, pp. 13–22. ACM, New York (2013)

    Google Scholar 

  6. Boonzajer Flaes, J., Rudinac, S., Worring, M.: What multimedia sentiment analysis says about city liveability. In: Ferro, N., Crestani, F., Moens, M.-F., Mothe, J., Silvestri, F., Nunzio, G.M., Hauff, C., Silvello, G. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 824–829. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30671-1_74

    Chapter  Google Scholar 

  7. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  MATH  Google Scholar 

  8. Google Maps. Postcodes Amsterdam. http://goo.gl/hHoZWi. Accessed Nov 2015

  9. Hoffman, M., Bach, F.R., Blei, D.M.: Online learning for latent Dirichlet allocation. In: Advances in Neural Information Processing Systems, NIPS 2010, pp. 856–864 (2010)

    Google Scholar 

  10. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, MM 2014, pp. 675–678. ACM New York (2014)

    Google Scholar 

  11. Kennedy, L., Naaman, M., Ahern, S., Nair, R., Rattenbury, T.: How flickr helps us make sense of the world: context and content in community-contributed media collections. In: Proceedings of the 15th ACM International Conference on Multimedia, MM 2007, pp. 631–640. ACM, New York (2007)

    Google Scholar 

  12. Larson, M., Soleymani, M., Serdyukov, P., Rudinac, S., Wartena, C., Murdock, V., Friedland, G., Ordelman, R., Jones, G.J.F.: Automatic tagging, geotagging in video collections, communities. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, ICMR 2011, pp. 51:1–51:8. ACM, New York (2011)

    Google Scholar 

  13. Luo, J., Joshi, D., Yu, J., Gallagher, A.: Geotagging in multimedia and computer vision–a survey. Multimedia Tools Appl. 51(1), 187–211 (2011)

    Article  Google Scholar 

  14. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 849–856. MIT Press, Cambridge (2002)

    Google Scholar 

  15. Porzi, L., Rota Bulò, S., Lepri, B., Ricci, E.: Predicting and understanding urban perception with convolutional neural networks. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM 2015, pp. 139–148. ACM, New York (2015)

    Google Scholar 

  16. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, May 2010

    Google Scholar 

  17. Rudinac, S., Hanjalic, A., Larson, M.: Generating visual summaries of geographic areas using community-contributed images. IEEE Trans. Multimedia 15(4), 921–932 (2013)

    Article  Google Scholar 

  18. Statistics Netherlands. Neighbourhood statistics. https://www.cbs.nl/nl-nl/maatwerk/2015/48/kerncijfers-wijken-en-buurten-2014. Accessed Nov 2015

  19. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015

    Google Scholar 

  21. Thomee, B., Arapakis, I., Shamma, D.A.: Finding social points of interest from georeferenced and oriented online photographs. ACM Trans. Multimedia Comput. Commun. Appl. 12(2), 36:1–36:23 (2016)

    Article  Google Scholar 

  22. Thomee, B., Rae, A.: Uncovering locally characterizing regions within geotagged data. In: Proceedings of the 22nd International Conference on World Wide Web, WWW 2013, pp. 1285–1296 (2013)

    Google Scholar 

  23. Toole, J.L., Ulm, M., González, M.C., Bauer, D.: Inferring land use from mobile phone activity. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, UrbComp 2012, pp. 1–8. ACM, New York (2012)

    Google Scholar 

  24. Trevisiol, M., Jégou, H., Delhumeau, J., Gravier, G.: Retrieving geo-location of videos with a divide & conquer hierarchical multimodal approach. In: Proceedings of the 3rd ACM International Conference on Multimedia Retrieval, ICMR 2013, pp. 1–8. ACM, New York (2013)

    Google Scholar 

  25. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Yin, H., Cui, B., Huang, Z., Wang, W., Wu, X., Zhou, X.: Joint modeling of users’ interests and mobility patterns for point-of-interest recommendation. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM 2015, pp. 819–822. ACM, New York (2015)

    Google Scholar 

  27. Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and POIs. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 186–194. ACM, New York (2012)

    Google Scholar 

  28. Zahálka, J., Rudinac, S., Worring, M.: Interactive multimodal learning for venue recommendation. IEEE Trans. Multimedia 17(12), 2235–2244 (2015)

    Article  Google Scholar 

  29. Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. 5(3), 38:1–38:55 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stevan Rudinac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rudinac, S., Zahálka, J., Worring, M. (2017). Discovering Geographic Regions in the City Using Social Multimedia and Open Data. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds) MultiMedia Modeling. MMM 2017. Lecture Notes in Computer Science(), vol 10133. Springer, Cham. https://doi.org/10.1007/978-3-319-51814-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51814-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51813-8

  • Online ISBN: 978-3-319-51814-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics