Abstract
In this paper we investigate the potential of social multimedia and open data for automatically identifying regions within the city. We conjecture that the regions may be characterized by specific patterns related to their visual appearance, the manner in which the social media users describe them, and the human mobility patterns. Therefore, we collect a dataset of Foursquare venues, their associated images and users, which we further enrich with a collection of city-specific Flickr images, annotations and users. Additionally, we collect a large number of neighbourhood statistics related to e.g., demographics, housing and services. We then represent visual content of the images using a large set of semantic concepts output by a convolutional neural network and extract latent Dirichlet topics from their annotations. User, text and visual information as well as the neighbourhood statistics are further aggregated at the level of postal code regions, which we use as the basis for detecting larger regions in the city. To identify those regions, we perform clustering based on individual modalities as well as their ensemble. The experimental analysis shows that the automatically detected regions are meaningful and have a potential for better understanding dynamics and complexity of a city.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Andrienko, N., Andrienko, G., Fuchs, G., Jankowski, P.: Scalable and privacy-respectful interactive discovery of place semantics from human mobility traces. Inf. Vis. 15(2), 117–153 (2016)
Boureau, Y.-L., Ponce, J., LeCun, Y.: A theoretical analysis of feature pooling in visual recognition. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 111–118 (2010)
Cranshaw, J., Schwartz, R., Hong, J., Sadeh, N.: The livehoods project: utilizing social media to understand the dynamics of a city. In: International AAAI Conference on Weblogs and Social Media (2012)
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255, June 2009
Fang, Q., Sang, J., Xu, C.: Giant: geo-informative attributes for location recognition and exploration. In: Proceedings of the 21st ACM International Conference on Multimedia, MM 2013, pp. 13–22. ACM, New York (2013)
Boonzajer Flaes, J., Rudinac, S., Worring, M.: What multimedia sentiment analysis says about city liveability. In: Ferro, N., Crestani, F., Moens, M.-F., Mothe, J., Silvestri, F., Nunzio, G.M., Hauff, C., Silvello, G. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 824–829. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30671-1_74
Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)
Google Maps. Postcodes Amsterdam. http://goo.gl/hHoZWi. Accessed Nov 2015
Hoffman, M., Bach, F.R., Blei, D.M.: Online learning for latent Dirichlet allocation. In: Advances in Neural Information Processing Systems, NIPS 2010, pp. 856–864 (2010)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, MM 2014, pp. 675–678. ACM New York (2014)
Kennedy, L., Naaman, M., Ahern, S., Nair, R., Rattenbury, T.: How flickr helps us make sense of the world: context and content in community-contributed media collections. In: Proceedings of the 15th ACM International Conference on Multimedia, MM 2007, pp. 631–640. ACM, New York (2007)
Larson, M., Soleymani, M., Serdyukov, P., Rudinac, S., Wartena, C., Murdock, V., Friedland, G., Ordelman, R., Jones, G.J.F.: Automatic tagging, geotagging in video collections, communities. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, ICMR 2011, pp. 51:1–51:8. ACM, New York (2011)
Luo, J., Joshi, D., Yu, J., Gallagher, A.: Geotagging in multimedia and computer vision–a survey. Multimedia Tools Appl. 51(1), 187–211 (2011)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 849–856. MIT Press, Cambridge (2002)
Porzi, L., Rota Bulò, S., Lepri, B., Ricci, E.: Predicting and understanding urban perception with convolutional neural networks. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM 2015, pp. 139–148. ACM, New York (2015)
Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, May 2010
Rudinac, S., Hanjalic, A., Larson, M.: Generating visual summaries of geographic areas using community-contributed images. IEEE Trans. Multimedia 15(4), 921–932 (2013)
Statistics Netherlands. Neighbourhood statistics. https://www.cbs.nl/nl-nl/maatwerk/2015/48/kerncijfers-wijken-en-buurten-2014. Accessed Nov 2015
Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015
Thomee, B., Arapakis, I., Shamma, D.A.: Finding social points of interest from georeferenced and oriented online photographs. ACM Trans. Multimedia Comput. Commun. Appl. 12(2), 36:1–36:23 (2016)
Thomee, B., Rae, A.: Uncovering locally characterizing regions within geotagged data. In: Proceedings of the 22nd International Conference on World Wide Web, WWW 2013, pp. 1285–1296 (2013)
Toole, J.L., Ulm, M., González, M.C., Bauer, D.: Inferring land use from mobile phone activity. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, UrbComp 2012, pp. 1–8. ACM, New York (2012)
Trevisiol, M., Jégou, H., Delhumeau, J., Gravier, G.: Retrieving geo-location of videos with a divide & conquer hierarchical multimodal approach. In: Proceedings of the 3rd ACM International Conference on Multimedia Retrieval, ICMR 2013, pp. 1–8. ACM, New York (2013)
Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010)
Yin, H., Cui, B., Huang, Z., Wang, W., Wu, X., Zhou, X.: Joint modeling of users’ interests and mobility patterns for point-of-interest recommendation. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM 2015, pp. 819–822. ACM, New York (2015)
Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and POIs. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 186–194. ACM, New York (2012)
Zahálka, J., Rudinac, S., Worring, M.: Interactive multimodal learning for venue recommendation. IEEE Trans. Multimedia 17(12), 2235–2244 (2015)
Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. 5(3), 38:1–38:55 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Rudinac, S., Zahálka, J., Worring, M. (2017). Discovering Geographic Regions in the City Using Social Multimedia and Open Data. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds) MultiMedia Modeling. MMM 2017. Lecture Notes in Computer Science(), vol 10133. Springer, Cham. https://doi.org/10.1007/978-3-319-51814-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-51814-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-51813-8
Online ISBN: 978-3-319-51814-5
eBook Packages: Computer ScienceComputer Science (R0)