Abstract
Sketch-based image retrieval (SBIR) systems, which interactively search photo collections using free-hand sketches depicting shapes, have attracted much attention recently. In most existing SBIR techniques, the color images stored in a database are first transformed into corresponding sketches. Then, features of the sketches are extracted to generate the sketch visual words for later retrieval. However, transforming color images to sketches will normally incur loss of information, thus decreasing the final performance of SBIR methods. To address this problem, we propose a new method called M-SBIR. In M-SBIR, besides sketch visual words, we also generate a set of visual words from the original color images. Then, we leverage the mapping between the two sets to identify and remove sketch visual words that cannot describe the original color images well. We demonstrate the performance of M-SBIR on a public data set. We show that depending on the number of different visual words adopted, our method can achieve \(9.8\sim 13.6\%\) performance improvement compared to the classic SBIR techniques. In addition, we show that for a database containing multiple color images of the same objects, the performance of M-SBIR can be further improved via some simple techniques like co-segmentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)
Cao, Y., Wang, H., Wang, C., Li, Z., Zhang, L., Zhang, L.: Mindfinder: interactive sketch-based image search on millions of images. In: Proceedings of the International Conference on Multimedia, pp. 1605–1608. ACM (2010)
Chen, T., Cheng, M.M., Tan, P., Shamir, A., Hu, S.M.: Sketch2Photo: internet image montage. ACM Trans. Graph. (TOG) 28(5), 124 (2009)
Choy, S.K., Tong, C.S.: Statistical wavelet subband characterization based on generalized gamma density and its application in texture retrieval. IEEE Trans. Image Process. 19(2), 281–289 (2010)
Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. (CSUR) 40(2), 5 (2008)
Eitz, M., Hildebrand, K., Boubekeur, T., Alexa, M.: Photosketch: a sketch based image query and compositing system. In: SIGGRAPH: Talks, p. 60. ACM (2009)
Eitz, M., Hildebrand, K., Boubekeur, T., Alexa, M.: Sketch-based image retrieval: benchmark and bag-of-features descriptors. IEEE Trans. Vis. Comput. Graph. 17(11), 1624–1636 (2011)
Faktor, A., Irani, M.: Co-segmentation by composition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1297–1304 (2013)
Fonseca, M.J., Ferreira, A., Jorge, J.A.: Content-based retrieval of technical drawings. Int. J. Comput. Appl. Technol. 23(2–4), 86–100 (2005)
Hu, R., Barnard, M., Collomosse, J.: Gradient field descriptor for sketch based retrieval and localization. In: 17th IEEE International Conference on Image Processing (ICIP), pp. 1025–1028. IEEE (2010)
Hu, R., Collomosse, J.: A performance evaluation of gradient field HOG descriptor for sketch based image retrieval. Comput. Vis. Image Underst. 117(7), 790–806 (2013)
Krapac, J., Verbeek, J., Jurie, F.: Modeling spatial layout with fisher vectors for image categorization. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1487–1494. IEEE (2011)
Leung, W.H., Chen, T.: Trademark retrieval using contour-skeleton stroke classification. In: 2002 IEEE International Conference on Multimedia and Expo, vol. 2, pp. 517–520. IEEE (2002)
Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006). doi:10.1007/11744085_38
Rajendran, R., Chang, S.F.: Image retrieval with sketches and compositions. In: IEEE International Conference on Multimedia and Expo, vol. 2, pp. 717–720. IEEE (2000)
Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans. Circ. Syst. Video Technol. 8(5), 644–655 (1998)
Shih, J.L., Chen, L.H.: A new system for trademark segmentation and retrieval. Image Vis. Comput. 19(13), 1011–1018 (2001)
Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: Ninth IEEE International Conference on Computer Vision, Proceedings, pp. 1470–1477. IEEE (2003)
Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)
Wang, C., Zhang, J., Yang, B., Zhang, L.: Sketch2Cartoon: composing cartoon images by sketching. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 789–790. ACM (2011)
Wang, J.J.Y., Bensmail, H., Gao, X.: Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification. Pattern Recogn. 46(12), 3249–3255 (2013)
Acknowledgment
This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572060, 61190125, 61472024) and CERNET Innovation Project 2015 (Grant No. NGII20151004).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Niu, J., Ma, J., Lu, J., Liu, X., Zhu, Z. (2017). M-SBIR: An Improved Sketch-Based Image Retrieval Method Using Visual Word Mapping. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds) MultiMedia Modeling. MMM 2017. Lecture Notes in Computer Science(), vol 10133. Springer, Cham. https://doi.org/10.1007/978-3-319-51814-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-51814-5_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-51813-8
Online ISBN: 978-3-319-51814-5
eBook Packages: Computer ScienceComputer Science (R0)