Skip to main content

M-SBIR: An Improved Sketch-Based Image Retrieval Method Using Visual Word Mapping

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10133))

Included in the following conference series:

  • 1659 Accesses

Abstract

Sketch-based image retrieval (SBIR) systems, which interactively search photo collections using free-hand sketches depicting shapes, have attracted much attention recently. In most existing SBIR techniques, the color images stored in a database are first transformed into corresponding sketches. Then, features of the sketches are extracted to generate the sketch visual words for later retrieval. However, transforming color images to sketches will normally incur loss of information, thus decreasing the final performance of SBIR methods. To address this problem, we propose a new method called M-SBIR. In M-SBIR, besides sketch visual words, we also generate a set of visual words from the original color images. Then, we leverage the mapping between the two sets to identify and remove sketch visual words that cannot describe the original color images well. We demonstrate the performance of M-SBIR on a public data set. We show that depending on the number of different visual words adopted, our method can achieve \(9.8\sim 13.6\%\) performance improvement compared to the classic SBIR techniques. In addition, we show that for a database containing multiple color images of the same objects, the performance of M-SBIR can be further improved via some simple techniques like co-segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  2. Cao, Y., Wang, H., Wang, C., Li, Z., Zhang, L., Zhang, L.: Mindfinder: interactive sketch-based image search on millions of images. In: Proceedings of the International Conference on Multimedia, pp. 1605–1608. ACM (2010)

    Google Scholar 

  3. Chen, T., Cheng, M.M., Tan, P., Shamir, A., Hu, S.M.: Sketch2Photo: internet image montage. ACM Trans. Graph. (TOG) 28(5), 124 (2009)

    Google Scholar 

  4. Choy, S.K., Tong, C.S.: Statistical wavelet subband characterization based on generalized gamma density and its application in texture retrieval. IEEE Trans. Image Process. 19(2), 281–289 (2010)

    Article  MathSciNet  Google Scholar 

  5. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. (CSUR) 40(2), 5 (2008)

    Article  Google Scholar 

  6. Eitz, M., Hildebrand, K., Boubekeur, T., Alexa, M.: Photosketch: a sketch based image query and compositing system. In: SIGGRAPH: Talks, p. 60. ACM (2009)

    Google Scholar 

  7. Eitz, M., Hildebrand, K., Boubekeur, T., Alexa, M.: Sketch-based image retrieval: benchmark and bag-of-features descriptors. IEEE Trans. Vis. Comput. Graph. 17(11), 1624–1636 (2011)

    Article  Google Scholar 

  8. Faktor, A., Irani, M.: Co-segmentation by composition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1297–1304 (2013)

    Google Scholar 

  9. Fonseca, M.J., Ferreira, A., Jorge, J.A.: Content-based retrieval of technical drawings. Int. J. Comput. Appl. Technol. 23(2–4), 86–100 (2005)

    Article  Google Scholar 

  10. Hu, R., Barnard, M., Collomosse, J.: Gradient field descriptor for sketch based retrieval and localization. In: 17th IEEE International Conference on Image Processing (ICIP), pp. 1025–1028. IEEE (2010)

    Google Scholar 

  11. Hu, R., Collomosse, J.: A performance evaluation of gradient field HOG descriptor for sketch based image retrieval. Comput. Vis. Image Underst. 117(7), 790–806 (2013)

    Article  Google Scholar 

  12. Krapac, J., Verbeek, J., Jurie, F.: Modeling spatial layout with fisher vectors for image categorization. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1487–1494. IEEE (2011)

    Google Scholar 

  13. Leung, W.H., Chen, T.: Trademark retrieval using contour-skeleton stroke classification. In: 2002 IEEE International Conference on Multimedia and Expo, vol. 2, pp. 517–520. IEEE (2002)

    Google Scholar 

  14. Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006). doi:10.1007/11744085_38

    Chapter  Google Scholar 

  15. Rajendran, R., Chang, S.F.: Image retrieval with sketches and compositions. In: IEEE International Conference on Multimedia and Expo, vol. 2, pp. 717–720. IEEE (2000)

    Google Scholar 

  16. Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans. Circ. Syst. Video Technol. 8(5), 644–655 (1998)

    Article  Google Scholar 

  17. Shih, J.L., Chen, L.H.: A new system for trademark segmentation and retrieval. Image Vis. Comput. 19(13), 1011–1018 (2001)

    Article  Google Scholar 

  18. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: Ninth IEEE International Conference on Computer Vision, Proceedings, pp. 1470–1477. IEEE (2003)

    Google Scholar 

  19. Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  20. Wang, C., Zhang, J., Yang, B., Zhang, L.: Sketch2Cartoon: composing cartoon images by sketching. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 789–790. ACM (2011)

    Google Scholar 

  21. Wang, J.J.Y., Bensmail, H., Gao, X.: Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification. Pattern Recogn. 46(12), 3249–3255 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572060, 61190125, 61472024) and CERNET Innovation Project 2015 (Grant No. NGII20151004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Niu, J., Ma, J., Lu, J., Liu, X., Zhu, Z. (2017). M-SBIR: An Improved Sketch-Based Image Retrieval Method Using Visual Word Mapping. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds) MultiMedia Modeling. MMM 2017. Lecture Notes in Computer Science(), vol 10133. Springer, Cham. https://doi.org/10.1007/978-3-319-51814-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51814-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51813-8

  • Online ISBN: 978-3-319-51814-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics