Skip to main content

Stochastic Decorrelation Constraint Regularized Auto-Encoder for Visual Recognition

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10133))

Included in the following conference series:

  • 1664 Accesses

Abstract

Deep neural networks have achieved state-of-the-art performance on many applications such as image classification, object detection and semantic segmentation. But the difficulty of optimizing the networks still exists when training networks with a huge number of parameters. In this work, we propose a novel regularizer called stochastic decorrelation constraint (SDC) imposed on the hidden layers of the large networks, which can significantly improve the networks’ generalization capacity. SDC reduces the co-adaptions of the hidden neurons in an explicit way, with a clear objective function. In the meanwhile, we show that training the network with our regularizer has the effect of training an ensemble of exponentially many networks. We apply the proposed regularizer to the auto-encoder for visual recognition tasks. Compared to the auto-encoder without any regularizers, the SDC constrained auto-encoder can extract features with less redundancy. Comparative experiments on the MNIST database and the FERET database demonstrate the superiority of our method. When reducing the size of training data, the optimization of the network becomes much more challenging, yet our method shows even larger advantages over the conventional methods.

This paper is supported in part by the National Natural Science Foundation of China under Grants 61471274, 91338202 and U1536204, and 61401317.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E.: Deep learning applications and challenges in big data analytics. J. Big Data 2, 1–21 (2015)

    Article  Google Scholar 

  2. Chen, X.W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014)

    Article  Google Scholar 

  3. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  4. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28, 100–108 (1979)

    MATH  Google Scholar 

  5. Dobra, A., Hans, C., Jones, B., Nevins, J.R., Yao, G., West, M.: Sparse graphical models for exploring gene expression data. J. Multivar. Anal. 90, 196–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Heckerman, D., Geiger, D., Chickering, D.M.: Learning bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20, 197–243 (1995)

    MATH  Google Scholar 

  7. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 648–655 (1998)

    Google Scholar 

  8. Hu, X.Y., Eleftheriou, E., Arnold, D.M.: Progressive edge-growth tanner graphs. In: Proceedings of IEEE Global Telecommunications Conference, pp. 995–1001 (2001)

    Google Scholar 

  9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning (2015)

    Google Scholar 

  10. Sohl-Dickstein, J., Poole, B., Ganguli, S.: Fast large-scale optimization by unifying stochastic gradient and quasi-newton methods. In: International Conference on Machine Learning (2014)

    Google Scholar 

  11. Zhang, T.: Solving large scale linear prediction problems using stochastic gradient descent algorithms. In: Proceedings of International Conference on Machine Learning, p. 116 (2004)

    Google Scholar 

  12. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of International Conference on Machine Learning, pp. 1096–1103 (2008)

    Google Scholar 

  13. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  15. Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using dropconnect. In: Proceedings of International Conference on Machine Learning, pp. 1058–1066 (2013)

    Google Scholar 

  16. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  18. Cheung, B., Livezey, J.A., Bansal, A.K., Olshausen, B.A.: Discovering hidden factors of variation in deep networks. arXiv preprint arXiv:1412.6583 (2014)

  19. Cogswell, M., Ahmed, F., Girshick, R., Zitnick, L., Batra, D.: Reducing overfitting in deep networks by decorrelating representations. arXiv preprint arXiv:1511.06068 (2015)

  20. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits (1998)

    Google Scholar 

  21. Phillips, P.J.: The facial recognition technology (FERET) database (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mao, F., Xiong, W., Du, B., Zhang, L. (2017). Stochastic Decorrelation Constraint Regularized Auto-Encoder for Visual Recognition. In: Amsaleg, L., GuĂ°mundsson, G., Gurrin, C., JĂłnsson, B., Satoh, S. (eds) MultiMedia Modeling. MMM 2017. Lecture Notes in Computer Science(), vol 10133. Springer, Cham. https://doi.org/10.1007/978-3-319-51814-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51814-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51813-8

  • Online ISBN: 978-3-319-51814-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics