Skip to main content

Function Classification for the Retro-Engineering of Malwares

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10128))

Included in the following conference series:

  • 850 Accesses

Abstract

In the past ten years, our team has developed a method called morphological analysis that deals with malware detection. Morphological analysis focuses on algorithms. Here, we want to identify programs through their functions, and more precisely with the intention of those functions. The intention is described as a vector in a high dimensional vector space in the spirit of compositional semantics. We show how to use the intention of functions for their clustering. In a last step, we describe some experiments showing the relevance of the clustering and some of some possible applications for malware identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    but not fully!

  2. 2.

    or must not.

  3. 3.

    Being unique up to isomorphism, the definition does not depend on this choice.

References

  1. Abramsky, S., Sadrzadeh, M.: Semantic unification. In: Casadio, C., Coecke, B., Moortgat, M., Scott, P. (eds.) Categories and Types in Logic, Language, and Physics. LNCS, vol. 8222, pp. 1–13. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54789-8_1

    Chapter  Google Scholar 

  2. Beaucamps, P., Gnaedig, I., Marion, J.-Y.: Behavior abstraction in malware analysis. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 168–182. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16612-9_14

    Chapter  Google Scholar 

  3. Bird, S.: NLTK Documentation (2015)

    Google Scholar 

  4. Bonfante, G., Kaczmarek, M., Marion, J.-Y.: Architecture of a morphological malware detector. J. Comput. Virol. 5(3), 263–270 (2009)

    Article  Google Scholar 

  5. Bruschi, D., Martignoni, L., Monga, M.: Detecting self-mutating malware using control-flow graph matching. In: Büschkes, R., Laskov, P. (eds.) DIMVA 2006. LNCS, vol. 4064, pp. 129–143. Springer, Heidelberg (2006)

    Google Scholar 

  6. Bonfante, G., Marion, J.-Y., Sabatier, F.: Gorille sniffs code similarities, the case study of Qwerty versus Regin. In: Osorio, F.C. (ed.) Malware Conference, p. 8, Fajardo, Puerto Rico. IEEE, October 2015

    Google Scholar 

  7. Calvet, J.: Tripoux: reverse-engineering of malware packers for dummies. In: DeepSec 2010 (2010)

    Google Scholar 

  8. Copestake, A., Herbelot, A.: Lexicalised compositionality (2016)

    Google Scholar 

  9. Jacob, G., Debar, H., Filiol, E.: Behavioral detection of malware: from a survey towards an established taxonomy. J. Comput. Virol. 4(3), 251–266 (2008)

    Article  Google Scholar 

  10. Kaczmarek, M.: Malware instrumentation application to regin analysis. In: Freyssinet, E. (ed.) Malware Conference, p. 16, Paris, France, November 2015

    Google Scholar 

  11. LeDoux, C., Lakhotia, A.: Malware and machine learning. In: Yager, R.R., Reformat, M.Z., Alajlan, N. (eds.) Intelligent Methods for Cyber Warfare. SCI, vol. 563, pp. 1–42. Springer, Heidelberg (2015). doi:10.1007/978-3-319-08624-8_1

    Google Scholar 

  12. Peiravian, N., Zhu, X.: Machine learning for android malware detection using permission and API calls. In: Proceedings of the 2013 IEEE 25th International Conference on Tools with Artificial Intelligence, ICTAI 2013, pp. 300–305, Washington, DC, USA. IEEE Computer Society (2013)

    Google Scholar 

  13. Quéré, R.: Some proposals for comparison of soft partitions. Ph.D. Université de La Rochelle, December 2012

    Google Scholar 

  14. Ross, D.T.: Structured analysis (SA): a language for communicating ideas. IEEE Trans. Softw. Eng. 3(1), 16–34 (1977)

    Article  Google Scholar 

  15. Schuetze, H.: Automatic word sense discrimination. Comput. Linguist. 1(24), 97–123 (1998)

    Google Scholar 

  16. Sheikhalishahi, M., Saracino, A., Mejri, M., Tawbi, N., Martinelli, F.: Fast and effective clustering of spam emails based on structural similarity. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) Foundations and Practice of Security. LNCS, vol. 9482, pp. 195–211. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  17. Symantec. 2016 Internet Security Threat Report (2016)

    Google Scholar 

  18. Teh, A., Stewart, A.: Human-readable real-time classifications of malicious executables. In: 10th Australian Information Security Management Conference (2012)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Jean-Yves Marion and Mizuhito Ogawa for early discussions and Fabrice Sabatier and Alexis Lartigue for discussions and some experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bonfante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bonfante, G., Nogues, J.O. (2017). Function Classification for the Retro-Engineering of Malwares. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2016. Lecture Notes in Computer Science(), vol 10128. Springer, Cham. https://doi.org/10.1007/978-3-319-51966-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51966-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51965-4

  • Online ISBN: 978-3-319-51966-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics