Abstract
Taking time as a dynamical variable, we study a wave with 4-vector amplitude that has vibrations of matter in space and time. By analyzing its Hamiltonian density equation, we find that the system is quantized. It obeys the Klein-Gordon equation and thus also the Schrödinger equation. Only a probability can be assigned for the detection of a particle. This quantized field has physical structures that resemble a zero-spin quantum field. The possibility to apply our formalism outside quantum physics is briefly discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Unlike the ‘intrinsic time’ [23, 24] suggested as a dynamical variable of the studied system (e.g. position of a clock’s dial or position of a classical free particle [26]) that can function to measure time, the ‘internal time’ defined here is an intrinsic property of matter that has vibration in time.
References
Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)
Anderson, E.: Problem of time in quantum gravity. Annalen der Physik 524, 757 (2012)
Munoz, J., Ruschhaupt, A., Campo, A. (eds.): Time in Quantum Mechanics - Vol 2. Lecture Notes in Physics, vol. 789, p. 97. Springer, Heidelberg (2009)
Yearsley, J., Downs, D., Halliwell, J., Hashagen, A.: Quantum arrival and dwell times via idealized clocks. Phys. Rev. A 84, 022109 (2011)
Ordonez, G., Hatano, N.: Existence and nonexistence of an intrinsic tunneling time. Phys. Rev. A 79, 042102 (2009)
Kiukas, J., Ruschhaupt, A., Werner, R.: Tunneling times with covariant measurements. Found. Phys. 39, 829 (2009)
Madrid, R.: Time as a dynamical variable in quantum decay. Phys. A 913, 217 (2013)
Pauli, W.: General Principles of Quantum Mechanics. Springer, Heidelberg (1980)
Muga, J., Leavens, C.: Arrival time in quantum mechanics. Phys. Rep. 338, 353 (2000)
Aharonov, Y., Bohm, D.: Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649 (1961)
Holevo, A.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)
Aharonov, Y., Oppenheim, J., Popescu, S., Reznik, B., Unruh, W.: Measurement of time of arrival in quantum mechanics. Phys. Rev. A 57, 4130 (1998)
Olkhovsky, V., Recami, E.: Time as a quantum observable. Int. J. Mod. Phys. A 22, 5063 (2007)
Wang, Z., Xiong, C.: How to introduce time operator. Ann. Phys. (N.Y.) 322, 2304 (2007)
Galapon, E.: Post Paulis theorem emerging perspective on time in quantum mechanics. In: Muga, G., Ruschhaupt, A., Campo, A. (eds.) Time in Quantum Mechanics - Vol. 2. Lecture Notes in Physics, vol. 789. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03174-8_3. And references therein
Brunetti, R., Fredenhagen, K., Hoge, M.: Time in quantum physics: from an external parameter to an intrinsic observable. Found. Phys. 40, 1368 (2010)
Hegerfeldt, G., Muga, J.: Symmetries and time operators. J. Phys. A Math. Theor. 43, 505303 (2010)
Strauss, Y., Silman, J., Machnes, S., Horwitz, L.: Study of a self-adjoint operator indicating the direction of time within standard quantum mechanics. C. R. Math. 349, 1117 (2011)
Arsenovic, D., Buric, N., Davidovic, D., Prvanovic, S.: Dynamical time versus system time in quantum mechanics. Chin. Phys. B 21, 070302 (2012)
Lee, T.D.: Can time be a discrete dynamical variable? Phys. Lett. B 122, 217 (1983)
Lee, T.D.: Difference equations and conservation laws. J. Stat. Phys. 46, 843 (1987)
Yau, H.Y.: Emerged quantum field of a deterministic system with vibrations in space and time. Conf. Proc. 1508, 514 (2012)
Busch, P.: On the energy-time uncertainty relation. Part I: dynamical time and time indeterminacy. Found. Phys. 20, 1 (1990)
Busch, P.: On the energy-time uncertainty relation. Part II: pragmatic time versus energy indeterminacy. Found. Phys. 20, 33 (1990)
Hilgevoord, J.: Time in quantum mechanics: a story of confusion. Stud. Hist. Phil. Mod. Phys. 36, 29 (2005)
Butterfield, J.: On Time in Quantum Physics - The Blackwell Companion to the Philosophy of Time. Wiley-Blackwell, Oxford (2013)
Jammer, M.: Concepts of Mass in Contemporary Physics and Philosophy. Princeton University Press, Princeton (2009)
Salecker, H., Wigner, E.: Quantum limitations of the measurement of space-time distances. Phys. Rev. 109, 571 (1958)
Karolyhazy, F.: Sixty-Two Years of Uncertainty. Plenum, New York (1990). Ed. by Miller, A.I
Kudaka, S., Matsumoto, S.: Uncertainty principle for proper time and mass. J. Math. Phys. 40, 1237 (1999)
Aharonov, Y., Reznik, B.: Weighing a closed system and the time-energy uncertainty principle. Phys. Rev. Lett. 84, 1368 (2000)
Briggs, J.: A derivation of the time-energy uncertainty relation. J. Phys. Conf. Ser. 99, 012002 (2008)
Greenberger, D.: Conceptual problems related to time and mass in quantum theory. arXiv:1011.3709. [quant-ph]
Feynman, R.: The theory of positrons. Phys. Rev. 76, 749 (1949)
de Barros, A., Oas, G.: Some examples of contextuality in physics: implications to quantum cognition. Contextuality Quantum Phys. Psychol. 6, 153 (2015). Ed. by Dzhafarov, E., Jordan, S., Zhang, R., Cervantes, V
Khrennikov, A.: Quantum-like brain: interference of minds. Biosystems 84, 225 (2006)
Khrennikov, A.: Quantum-like model of processing of information in the brain based on classical electromagnetic field. Biosystems 105, 250 (2011)
de Barros, A.: Quantum-like model of behavioral response computation using neural oscillators. Biosystems 110, 171 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Yau, H.Y. (2017). Probabilistic Nature of a Field with Time as a Dynamical Variable. In: de Barros, J., Coecke, B., Pothos, E. (eds) Quantum Interaction. QI 2016. Lecture Notes in Computer Science(), vol 10106. Springer, Cham. https://doi.org/10.1007/978-3-319-52289-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-52289-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-52288-3
Online ISBN: 978-3-319-52289-0
eBook Packages: Computer ScienceComputer Science (R0)