Skip to main content

Quantum Bootstrap Aggregation

  • Conference paper
  • First Online:
Quantum Interaction (QI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10106))

Included in the following conference series:

Abstract

We set out a strategy for quantizing attribute bootstrap aggregation to enable variance-resilient quantum machine learning. To do so, we utilise the linear decomposability of decision boundary parameters in the Rebentrost et al. Support Vector Machine to guarantee that stochastic measurement of the output quantum state will give rise to an ensemble decision without destroying the superposition over projective feature subsets induced within the chosen SVM implementation. We achieve a linear performance advantage, O(d), in addition to the existing O(log(n)) advantages of quantization as applied to Support Vector Machines. The approach extends to any form of quantum learning giving rise to linear decision boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113 (2014). 130501

    Google Scholar 

  2. Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altaisky, M., Zolnikova, N., Kaputkina, N., Krylov, V., Lozovik, Y.E., Dattani, N.S.: Towards a feasible implementation of quantum neural networks using quantum dots, arXiv preprint arXiv:1503.05125

  4. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

    Article  Google Scholar 

  5. Barry, J., Barry, D.T., Aaronson, S.: Quantum partially observable markov decision processes. Phys. Rev. A 90(3), 032311 (2014)

    Article  Google Scholar 

  6. Lu, S., Braunstein, S.L.: Quantum decision tree classifier. Quantum Inf. Process. 13(3), 757–770 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tucci, R.R.: Quantum circuit for discovering from data the structure of classical bayesian networks, arXiv preprint arXiv:1404.0055

  8. Wiebe, N., Kapoor, A., Svore, K.: Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning, arXiv preprint arXiv:1401.2142

  9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). doi:10.1007/BF00994018

    MATH  Google Scholar 

  10. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009). arXiv:0811.3171

    Article  MathSciNet  Google Scholar 

  11. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  12. Valentini, G., Dietterich, T.G.: Low bias bagged support vector machines. In: International Conference on Machine Learning, ICML-2003, pp. 752–759. Morgan Kaufmann (2003)

    Google Scholar 

Download references

Acknowledgment

The first author would like to acknowledge financial support from the Horizon 2020 European Research project DREAMS4CARS (#731593). The second author is partially supported by EU ICT COST Action IC1405 “Reversible Computation—Extending Horizons of Computing”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Windridge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Windridge, D., Nagarajan, R. (2017). Quantum Bootstrap Aggregation. In: de Barros, J., Coecke, B., Pothos, E. (eds) Quantum Interaction. QI 2016. Lecture Notes in Computer Science(), vol 10106. Springer, Cham. https://doi.org/10.1007/978-3-319-52289-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52289-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52288-3

  • Online ISBN: 978-3-319-52289-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics