Abstract
We set out a strategy for quantizing attribute bootstrap aggregation to enable variance-resilient quantum machine learning. To do so, we utilise the linear decomposability of decision boundary parameters in the Rebentrost et al. Support Vector Machine to guarantee that stochastic measurement of the output quantum state will give rise to an ensemble decision without destroying the superposition over projective feature subsets induced within the chosen SVM implementation. We achieve a linear performance advantage, O(d), in addition to the existing O(log(n)) advantages of quantization as applied to Support Vector Machines. The approach extends to any form of quantum learning giving rise to linear decision boundaries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113 (2014). 130501
Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)
Altaisky, M., Zolnikova, N., Kaputkina, N., Krylov, V., Lozovik, Y.E., Dattani, N.S.: Towards a feasible implementation of quantum neural networks using quantum dots, arXiv preprint arXiv:1503.05125
Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)
Barry, J., Barry, D.T., Aaronson, S.: Quantum partially observable markov decision processes. Phys. Rev. A 90(3), 032311 (2014)
Lu, S., Braunstein, S.L.: Quantum decision tree classifier. Quantum Inf. Process. 13(3), 757–770 (2014)
Tucci, R.R.: Quantum circuit for discovering from data the structure of classical bayesian networks, arXiv preprint arXiv:1404.0055
Wiebe, N., Kapoor, A., Svore, K.: Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning, arXiv preprint arXiv:1401.2142
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). doi:10.1007/BF00994018
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009). arXiv:0811.3171
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
Valentini, G., Dietterich, T.G.: Low bias bagged support vector machines. In: International Conference on Machine Learning, ICML-2003, pp. 752–759. Morgan Kaufmann (2003)
Acknowledgment
The first author would like to acknowledge financial support from the Horizon 2020 European Research project DREAMS4CARS (#731593). The second author is partially supported by EU ICT COST Action IC1405 “Reversible Computation—Extending Horizons of Computing”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Windridge, D., Nagarajan, R. (2017). Quantum Bootstrap Aggregation. In: de Barros, J., Coecke, B., Pothos, E. (eds) Quantum Interaction. QI 2016. Lecture Notes in Computer Science(), vol 10106. Springer, Cham. https://doi.org/10.1007/978-3-319-52289-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-52289-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-52288-3
Online ISBN: 978-3-319-52289-0
eBook Packages: Computer ScienceComputer Science (R0)