Skip to main content

Mood-Based On-Car Music Recommendations

  • Conference paper
  • First Online:
Industrial Networks and Intelligent Systems (INISCOM 2016)

Abstract

Driving and music listening are two inseparable everyday activities for millions of people today in the world. Considering the high correlation between music, mood and driving comfort and safety, it makes sense to use appropriate and intelligent music recommendations based on the mood of drivers and songs in the context of car driving. The objective of this paper is to present the project of a contextual mood-based music recommender system capable of regulating the driver’s mood and trying to have a positive influence on her driving behaviour. Here we present the proof of concept of the system and describe the techniques and technologies that are part of it. Further possible future improvements on each of the building blocks are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)

    Article  Google Scholar 

  2. Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Aydin, A., Lüke, K.-H., Schwaiger, R.: InCarMusic: context-aware music recommendations in a car. In: Huemer, C., Setzer, T. (eds.) EC-Web 2011. LNBIP, vol. 85, pp. 89–100. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23014-1_8

    Chapter  Google Scholar 

  3. Çano, E., Morisio, M.: Characterization of public datasets for recommender systems. In: 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), pp. 249–257, September 2015

    Google Scholar 

  4. Dibben, N., Williamson, V.: An exploratory survey of in-vehicle music listening. Psychol. Music 35(4), 571 (2007)

    Article  Google Scholar 

  5. Eerola, T., Friberg, A., Bresin, R.: Emotional expression in music: contribution, linearity, and additivity of primary musical cues. Frontiers Psychol. 4(487), 1–12 (2013)

    Google Scholar 

  6. Ekkekakis, P.: Affect, mood, and emotion. In: Measurement in Sport and Exercise Psychology. Human Kinetics (2012)

    Google Scholar 

  7. Garrity, R.D., Demick, J.: Relations among personality traits, mood states, and driving behaviors. J. Adult Dev. 8(2), 109–118 (2001)

    Article  Google Scholar 

  8. Hevner, K.: Experimental studies of the elements of expression in music. Am. J. Psychol. 48, 246–268 (1936)

    Article  Google Scholar 

  9. Hu, X.: Improving music mood classification using lyrics, audio and social tags. Ph.D. thesis, Citeseer (2010)

    Google Scholar 

  10. Hu, Y., Chen, X., Yang, D.: Lyric-based song emotion detection with affective lexicon and fuzzy clustering method. In: Proceedings of ISMIR 2009, pp. 123–128 (2009)

    Google Scholar 

  11. Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system (IAPS): affective ratings of pictures and instruction manual. Technical report A-8, The Center for Research in Psychophysiology, University of Florida, Gainesville, FL (2008)

    Google Scholar 

  12. Laurier, C., Sordo, M., Serrà, J., Herrera, P.: Music mood representations from social tags. In: International Society for Music Information Retrieval (ISMIR) Conference, Kobe, Japan, pp. 381–386, 26 October 2009

    Google Scholar 

  13. Meng, R., Mao, C., Choudhury, R.R.: Driving analytics: will it be obds or smartphones? Zendrive Whitepaper (2014)

    Google Scholar 

  14. Murphey, Y.L., Milton, R., Kiliaris, L.: Driver’s style classification using jerk analysis. In: IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems, CIVVS 2009, pp. 23–28, March 2009

    Google Scholar 

  15. Nesbit, S.M., Conger, J.C., Conger, A.J.: A quantitative review of the relationship between anger and aggressive driving. Aggression Violent Behav. 12(2), 156–176 (2007)

    Article  Google Scholar 

  16. Peter, C., Ebert, E., Beikirch, H.: A wearable multi-sensor system for mobile acquisition of emotion-related physiological data. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 691–698. Springer, Heidelberg (2005). doi:10.1007/11573548_89

    Chapter  Google Scholar 

  17. Russell, J.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)

    Article  Google Scholar 

  18. Saari, P., Barthet, M., Fazekas, G., Eerola, T., Sandler, M.B.: Semantic models of musical mood: Comparison between crowd-sourced and curated editorial tags. In: 2013 IEEE International Conference on Multimedia and Expo Workshops, San Jose, CA, USA, 15–19 July, pp. 1–6 (2013)

    Google Scholar 

  19. Schäfer, T., Sedlmeier, P., Städtler, C., Huron, D.: The psychological functions of music listening. Frontiers Psychol. 4(511), 1–33 (2013)

    Google Scholar 

  20. Schilit, B.N., Theimer, M.M.: Disseminating active map information to mobile hosts. IEEE Netw. 8(5), 22–32 (1994)

    Article  Google Scholar 

  21. Valenza, G., Citi, L., Lanatá, A., Scilingo, E.P., Barbieri, R.: Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics. Scientific reports 4, (2014)

    Google Scholar 

  22. van der Zwaag, M.D., Janssen, J.H., Nass, C., Westerink, J.H., Chowdhury, S., de Waard, D.: Using music to change mood while driving. Ergonomics 56(10), 1504–1514 (2013). PMID: 23998711

    Article  Google Scholar 

  23. Västfjäll, D.: Emotion induction through music: a review of the musical mood induction procedure. Musicae Scientiae 5(1 suppl.), 173–211 (2002)

    Article  Google Scholar 

  24. Viereckl, R., Ahlemann, D., Koster, A., Jursch, S.: Racing ahead with autonomous cars and digital innovation. Auto Tech Rev. 4(12), 18–23 (2015)

    Article  Google Scholar 

  25. Xia, Y., Wang, L., Wong, K.-F.: Sentiment vector space model for lyric-based song sentiment classification. Int. J. Comput. Proc. Oriental Lang. 21(4), 309–330 (2008)

    Article  Google Scholar 

  26. Yang, Y.-H., Lin, Y.-C., Cheng, H.-T., Liao, I.-B., Ho, Y.-C., Chen, H.H.: Toward multi-modal music emotion classification. In: Huang, Y.-M.R., Xu, C., Cheng, K.-S., Yang, J.-F.K., Swamy, M.N.S., Li, S., Ding, J.-W. (eds.) PCM 2008. LNCS, vol. 5353, pp. 70–79. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89796-5_8

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was done at the Joint Open Lab MobiLAB and was supported by a fellowship from TIM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erion Çano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Çano, E., Coppola, R., Gargiulo, E., Marengo, M., Morisio, M. (2017). Mood-Based On-Car Music Recommendations. In: Maglaras, L., Janicke, H., Jones, K. (eds) Industrial Networks and Intelligent Systems. INISCOM 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 188. Springer, Cham. https://doi.org/10.1007/978-3-319-52569-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52569-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52568-6

  • Online ISBN: 978-3-319-52569-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics