Skip to main content

Phase-Based Registration of Cardiac Tagged MR Images by Incorporating Anatomical Constraints

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10124))

  • 790 Accesses

Abstract

This paper presents a novel method that combines respective benefits of the tracking-based methods and the Gabor-based non-tracking approaches for improving the motion/strain quantification from tagged MR images. The “tag number constant” concept used in Gabor-based non-tracking methods is integrated into a recent phase-based registration framework. We evaluated our method on both synthetic and real data: (1) on a synthetic data of a normal heart, we found that the constraint improved both longitudinal and circumferential strains accuracies; (2) on 15 healthy volunteers, the proposed method achieved better tracking accuracy compared to three state-of-the-art methods; (3) on one patient dataset, we show that our method is able to distinguish the infarcted segments from the normal ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou, Y., Bernard, O., Saloux, E., Manrique, A., Allain, P., Makram-Ebeid, S., De Craene, M.: 3D harmonic phase tracking with anatomical regularization. Med. Image Anal. 26(1), 70–81 (2015)

    Article  Google Scholar 

  2. Osman, N.F., Kerwin, W.S., McVeigh, E.R., Prince, J.L.: Cardiac motion tracking using cine harmonic phase (HARP) magnetic resonance imaging. Magn. Reson. Med. 42(6), 1048 (1999)

    Article  Google Scholar 

  3. Qian, Z., Liu, Q., Metaxas, D.N., Axel, L.: Identifying regional cardiac abnormalities from myocardial strains using nontracking-based strain estimation and spatio-temporal tensor analysis. IEEE Trans. Med. Imaging 30(12), 2017–2029 (2011)

    Article  Google Scholar 

  4. Bruurmijn, L.C.M., Kause, H.B., Filatova, O.G., Duits, R., Fuster, A., Florack, L.M.J., Assen, H.C.: Myocardial deformation from local frequency estimation in tagging MRI. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 284–291. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38899-6_34

    Chapter  Google Scholar 

  5. Kause, H.B., Filatova, O.G., Duits, R., Bruurmijn, L.C.M., Fuster, A., Westenberg, J.J.M., Florack, L.M.J., van Assen, H.C.: Direct myocardial strain assessment from frequency estimation in tagging MRI. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2013. LNCS, vol. 8330, pp. 212–219. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54268-8_25

    Chapter  Google Scholar 

  6. Zhou, Y., De Craene, M., Bernard, O.: Phase-based registration of cardiac tagged mr images using anatomical deformation model. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 617–620. IEEE (2016)

    Google Scholar 

  7. Makram-Ebeid, S., Somphone, O.: Non-rigid image registration using a hierarchical partition of unity finite element method. In: 2007 IEEE 11th International Conference on Computer Vision ICCV 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  8. Marchesseau, S., Delingette, H., Sermesant, M., Ayache, N.: Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform. Biomech. Model. Mechanobiol. 12(4), 815–831 (2013)

    Article  Google Scholar 

  9. Tobon-Gomez, C., De Craene, M., Mcleod, K., Tautz, L., Shi, W., Hennemuth, A., Prakosa, A., Wang, H., Carr-White, G., Kapetanakis, S., et al.: Benchmarking framework for myocardial tracking and deformation algorithms: An open access database. Med. Image Anal. 17(6), 632–648 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitian Zhou .

Editor information

Editors and Affiliations

Appendix

Appendix

In Eq. 3, conducting \(1^{st}\)-order approximations on \(\mathcal {A}_k^t\) leads to:

(6)

Instead of computing \(\mathcal {A}_k^t\) maps by phase unwrapping which is highly sensitive to image artifacts, we chose to circumvent the issue by (1) computing \(\nabla \mathcal {A}_k^t\) from HARP phases by the method described in [2] and (2) further computing \(\mathcal {A}_k^{\tau }(\mathbf {q}_{j})-\mathcal {A}_k^{\tau }(\mathbf {p}_{j})\) (\(\tau =ref\) and t) by curvilinear integration of \(\nabla \mathcal {A}_k^\tau \). The path of integration is easily defined using our mesh topology. Equation 6 then becomes:

(7)

where \(\beta _k^j\) is known and \(\delta _k^j(\mathbf {v})\) contains the model parameters.

We first replace both \(\varphi ^{(i)}(\mathbf {p}_{j})\) and \(\varphi ^{(i)}(\mathbf {q}_{j})\) in \(\delta _k^j(\mathbf {v})\) by \( g^{(i)}_j=\frac{ \varphi ^{(i)}(\mathbf {p}_{j}) + \varphi ^{(i)}(\mathbf {q}_{j})}{2}\). This is justified by the fact that \(\mathbf {p}_{j}\) and \(\mathbf {q}_{j}\) are symmetric to the window center (see Fig. 2), thus \(\varphi ^{(i)}(\mathbf {p}_{j})\approx \varphi ^{(i)}(\mathbf {q}_{j})\). \(\delta _k^j(\mathbf {v})\) then becomes:

(8)

Then, applying the Partition-of-Unity property [7] of \(g_j^{(i)}\) leads directly to [7]:

$$\begin{aligned} E_c(\mathbf {v})\le \sum _{i}{\sum _{j}{g_j^{(i)}\sum _{k}{\bigg (\beta _k^j- \frac{1}{2\pi }\mathcal {L}^{(i)}_j(\mathbf {v}^{(i)})} \bigg )^2}}=\sum _{i}{E_c^{(i)}(\mathbf {v}^{(i)})} \end{aligned}$$
(9)

Where \(E_{c}^{(i)}\) is quadratic since \(\mathcal {L}^{(i)}_j\) is linear in the motion parameters of \(\mathbf {v}^{(i)}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhou, Y., De Craene, M., Sermesant, M., Bernard, O. (2017). Phase-Based Registration of Cardiac Tagged MR Images by Incorporating Anatomical Constraints. In: Mansi, T., McLeod, K., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2016. Lecture Notes in Computer Science(), vol 10124. Springer, Cham. https://doi.org/10.1007/978-3-319-52718-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52718-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52717-8

  • Online ISBN: 978-3-319-52718-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics