Abstract
Nowadays many algorithms for mobile robot mapping in indoor environments have been created. In this work we use a Kinect 2.0 camera, a visible range cameras Beward B2720 and an infrared camera Flir Tau 2 for building 3D dense maps of indoor environments. We present the RGB-D Mapping and a new fusion algorithm combining visual features and depth information for matching images, aligning of 3D point clouds, a “loop-closure” detection, pose graph optimization to build global consistent 3D maps. Such 3D maps of environments have various applications in robot navigation, real-time tracking, non-cooperative remote surveillance, face recognition, semantic mapping. The performance and computational complexity of the proposed RGB-D Mapping algorithm in real indoor environments is presented and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hertzberg, C., Wagner, R., Birbach, O.: Experiences in building a visual slam system from open source components. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2644–2651 (2011)
Endres, F., Hess, J., Engelhard, N., Sturm, J.: An evaluation of the RGB-D SLAM system. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1691–1696 (2012)
Davison Andrew, J., Reid Ian, D., Molton Nicholas, D., Stasse, O.: MonoSLAM Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 7, 1052–1067 (2007)
Pollefeys, M., Nister, D., Frahm, J.-M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C.: Detailed real-time Urban 3D reconstruction from video. Int. J. Comput. Vis. 78(2), 143–167 (2008)
Fioraio, N., Konolige, K.: Realtime visual and point cloud SLAM. In: Proceedings of the RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras at Robotics, no. 27 (2011)
Konolige, K., Agrawal, M., Sola, J.: Large scale visual odometry for rough terrain. In: Proceedings of the International Symposium on Robotics Research, 201–212 (2010)
Konolige, K., Agrawal, M., Bolles, R.C., Cowan, C., Fischler, M., Gerkey, B.: Outdoor mapping and navigation using stereo vision. In: Proceedings of the International Symposium on Experimental Robotics, pp. 179–190 (2006)
Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26, 756–777 (2004)
Snavely, N., Seitz, S., Szeliski, R.: Photo tourism: exploring photo collections in 3D. Proc. ACM Trans. Graphics 25(3), 835–846 (2006)
Besl, P., McKay, N.: A method for registration of 3-D shapes trans. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. J. Image Vis. Comput. 10(3), 145–155 (1992). Elsevier
Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In: Graphics and Image Processing, pp. 381–395 (1981)
Lowe, D.G.: Object recognition from local scale invariant features. In: Proceedings of the 7th International conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. Comput. Vis. Image Underst. 110, 346–359 (2008)
Vokhmintcev, A.V., Sochenkov, I.V., Kuznetsov, V.V., Tikhonkikh, D.V.: Face recognition based on matching algorithm with recursive calculation of local oriented gradient histogram. Dokl. Math. 466(3), 261–266 (2016)
Miramontes-Jaramillo, D., Kober, V., Diaz-Ramirez, V.H., Karnaukhov, V.: A novel image matching algorithm based on sliding histograms of oriented gradients. J. Commun. Technol. Electron. 59(12), 1446–1450 (2014)
Vokhmintsev, A., Makovetskii, A., Kober, V., Sochenkov, I., Kuznetsov, V.: A fusion algorithm for building three-dimensional maps. In: Proceedings. SPIE‘s Annual Meeting: Applications of Digital Image Processing XXXVIII, vol. 8452, p. 9599-81 (2015)
Henry, P., Krainin, M., Herbst, E.: RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments. In: Proceedings of the 12th International Symposium on Experimental Robotics, pp. 477–491 (2014)
Josef, S.: Efficient visual search of videos cast as text retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 591–605 (2009)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference Computer Vision (2011)
Acknolwledgments
The work was supported by the RFBR, project no 16-08-00342 and the Ministry of Education and Science of Russian Federation, grant no.2.1766.2014.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Vokhmintcev, A., Yakovlev, K. (2017). A Real-Time Algorithm for Mobile Robot Mapping Based on Rotation-Invariant Descriptors and Iterative Close Point Algorithm. In: Ignatov, D., et al. Analysis of Images, Social Networks and Texts. AIST 2016. Communications in Computer and Information Science, vol 661. Springer, Cham. https://doi.org/10.1007/978-3-319-52920-2_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-52920-2_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-52919-6
Online ISBN: 978-3-319-52920-2
eBook Packages: Computer ScienceComputer Science (R0)