Skip to main content

A Real-Time Algorithm for Mobile Robot Mapping Based on Rotation-Invariant Descriptors and Iterative Close Point Algorithm

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2016)

Abstract

Nowadays many algorithms for mobile robot mapping in indoor environments have been created. In this work we use a Kinect 2.0 camera, a visible range cameras Beward B2720 and an infrared camera Flir Tau 2 for building 3D dense maps of indoor environments. We present the RGB-D Mapping and a new fusion algorithm combining visual features and depth information for matching images, aligning of 3D point clouds, a “loop-closure” detection, pose graph optimization to build global consistent 3D maps. Such 3D maps of environments have various applications in robot navigation, real-time tracking, non-cooperative remote surveillance, face recognition, semantic mapping. The performance and computational complexity of the proposed RGB-D Mapping algorithm in real indoor environments is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hertzberg, C., Wagner, R., Birbach, O.: Experiences in building a visual slam system from open source components. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2644–2651 (2011)

    Google Scholar 

  2. Endres, F., Hess, J., Engelhard, N., Sturm, J.: An evaluation of the RGB-D SLAM system. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1691–1696 (2012)

    Google Scholar 

  3. Davison Andrew, J., Reid Ian, D., Molton Nicholas, D., Stasse, O.: MonoSLAM Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 7, 1052–1067 (2007)

    Article  Google Scholar 

  4. Pollefeys, M., Nister, D., Frahm, J.-M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C.: Detailed real-time Urban 3D reconstruction from video. Int. J. Comput. Vis. 78(2), 143–167 (2008)

    Article  Google Scholar 

  5. Fioraio, N., Konolige, K.: Realtime visual and point cloud SLAM. In: Proceedings of the RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras at Robotics, no. 27 (2011)

    Google Scholar 

  6. Konolige, K., Agrawal, M., Sola, J.: Large scale visual odometry for rough terrain. In: Proceedings of the International Symposium on Robotics Research, 201–212 (2010)

    Google Scholar 

  7. Konolige, K., Agrawal, M., Bolles, R.C., Cowan, C., Fischler, M., Gerkey, B.: Outdoor mapping and navigation using stereo vision. In: Proceedings of the International Symposium on Experimental Robotics, pp. 179–190 (2006)

    Google Scholar 

  8. Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26, 756–777 (2004)

    Article  Google Scholar 

  9. Snavely, N., Seitz, S., Szeliski, R.: Photo tourism: exploring photo collections in 3D. Proc. ACM Trans. Graphics 25(3), 835–846 (2006)

    Article  Google Scholar 

  10. Besl, P., McKay, N.: A method for registration of 3-D shapes trans. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  11. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. J. Image Vis. Comput. 10(3), 145–155 (1992). Elsevier

    Article  Google Scholar 

  12. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In: Graphics and Image Processing, pp. 381–395 (1981)

    Google Scholar 

  13. Lowe, D.G.: Object recognition from local scale invariant features. In: Proceedings of the 7th International conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  14. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. Comput. Vis. Image Underst. 110, 346–359 (2008)

    Article  Google Scholar 

  15. Vokhmintcev, A.V., Sochenkov, I.V., Kuznetsov, V.V., Tikhonkikh, D.V.: Face recognition based on matching algorithm with recursive calculation of local oriented gradient histogram. Dokl. Math. 466(3), 261–266 (2016)

    MATH  Google Scholar 

  16. Miramontes-Jaramillo, D., Kober, V., Diaz-Ramirez, V.H., Karnaukhov, V.: A novel image matching algorithm based on sliding histograms of oriented gradients. J. Commun. Technol. Electron. 59(12), 1446–1450 (2014)

    Article  Google Scholar 

  17. Vokhmintsev, A., Makovetskii, A., Kober, V., Sochenkov, I., Kuznetsov, V.: A fusion algorithm for building three-dimensional maps. In: Proceedings. SPIE‘s Annual Meeting: Applications of Digital Image Processing XXXVIII, vol. 8452, p. 9599-81 (2015)

    Google Scholar 

  18. Henry, P., Krainin, M., Herbst, E.: RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments. In: Proceedings of the 12th International Symposium on Experimental Robotics, pp. 477–491 (2014)

    Google Scholar 

  19. Josef, S.: Efficient visual search of videos cast as text retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 591–605 (2009)

    Article  Google Scholar 

  20. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference Computer Vision (2011)

    Google Scholar 

Download references

Acknolwledgments

The work was supported by the RFBR, project no 16-08-00342 and the Ministry of Education and Science of Russian Federation, grant no.2.1766.2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vokhmintcev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vokhmintcev, A., Yakovlev, K. (2017). A Real-Time Algorithm for Mobile Robot Mapping Based on Rotation-Invariant Descriptors and Iterative Close Point Algorithm. In: Ignatov, D., et al. Analysis of Images, Social Networks and Texts. AIST 2016. Communications in Computer and Information Science, vol 661. Springer, Cham. https://doi.org/10.1007/978-3-319-52920-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52920-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52919-6

  • Online ISBN: 978-3-319-52920-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics