Abstract
Many meta-heuristic algorithms were proposed to solve several optimization problems. A new meta-heuristic bat algorithm (BA), inspired by the echolocation characteristics of micro-bats, has been extensively applied to solve continuous optimization problems. In addition, BA was also adapted to address combinatorial optimization problems. Unfortunately, like its basic version and other meta-heuristic algorithms, the adapted BA still suffers from some drawbacks such as slow speed convergence and easily trapping in local optima. We proposed a new variant of BA, called multi-population discrete bat algorithm (MPDBA), to solve traveling salesman problem (TSP). The validity of MPDBA was verified by comparative experiments using twenty TSP benchmark instances from TSBLIB. The experiments carried out show that MPDBA outperformed other state-of-art algorithms with respect to average and best solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)
Matai, R., Singh, S.P., Mittal, M.L.: Traveling salesman problem: an overview of applications, formulations, and solution approaches. In: Traveling Salesman Problem, Theory and Applications, pp. 1–24 (2010)
Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)
Wang, G., Guo, L.: A novel hybrid bat algorithm with harmony search for global numerical optimization. J. Appl. Math. 2013, 1–21 (2013)
Nguyen, T.-T., Pan, J.-S., Dao, T.-K., Kuo, M.-Y., Horng, M.-F.: Hybrid bat algorithm with artificial bee colony. In: Pan, J.-S., Snasel, V., Corchado, E.S., Abraham, A., Wang, S.-L. (eds.) Intelligent Data analysis and its Applications, Volume II. AISC, vol. 298, pp. 45–55. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07773-4_5
Pan, T.-S., Dao, T.-K., Nguyen, T.-T., Chu, S.-C.: Hybrid particle swarm optimization with bat algorithm. In: Sun, H., Yang, C.-Y., Lin, C.-W., Pan, J.-S., Snasel, V., Abraham, A. (eds.) Genetic and Evolutionary Computing. AISC, vol. 329, pp. 37–47. Springer, Heidelberg (2015). doi:10.1007/978-3-319-12286-1_5
Meng, X., Gao, X., Liu, Y.: A novel hybrid bat algorithm with differential evolution strategy for constrained optimization. Int. J. Hybrid Inf. Technol. 8(1), 383–396 (2015)
Khan, K., Nikov, A., Sahai, A.: A fuzzy bat clustering method for ergonomic screening of office workplaces. In: Dicheva, D., Markov, Z., Stefanova, E. (eds.) Third International Conference on Software, Services and Semantic Technologies S3T 2011. AINSC, vol. 101, pp. 59–66. Springer, Heidelberg (2011)
Abdel-Raouf, O., Abdel-Baset, M., El-Henawy, I.: An improved chaotic bat algorithm for solving integer programming problems. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 6(8), 18 (2014)
Gandomi, A.H., Yang, X.-S.: Chaotic bat algorithm. J. Comput. Sci. 5(2), 224–232 (2014)
Wang, G., Guo, L., Duan, H., Liu, L., Wang, H.: A bat algorithm with mutation for UCAV path planning. Sci. World J. 2012, 1–15 (2012)
Fister Jr., I., Fister, D., Yang, X.-S.: A hybrid bat algorithm. ArXiv e-prints, March 2013
Marichelvam, M., Prabaharan, T., Yang, X.-S., Geetha, M.: Solving hybrid flow shop scheduling problems using bat algorithm. Int. J. Logistics Econ. Globalisation 5(1), 15–29 (2013)
Nakamura, R., Pereira, L., Costa, K., Rodrigues, D., Papa, J., Yang, X.-S.: BBA: a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 291–297, August 2012
Raghavan, S., Sarwesh, P., Marimuthu, C., Chandrasekaran, K.: Bat algorithm for scheduling workflow applications in cloud. In: 2015 International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV), pp. 139–144. IEEE (2015)
Sabba, S., Chikhi, S.: A discrete binary version of bat algorithm for multidimensional knapsack problem. Int. J. Bio-Inspired Comput. 6(2), 140–152 (2014)
Tosun, Ö., Marichelvam, M.: Hybrid bat algorithm for flow shop scheduling problems. Int. J. Math. Oper. Res. 9(1), 125–138 (2016)
Hassan, E.A., Hafez, A.I., Hassanien, A.E., Fahmy, A.A.: A discrete bat algorithm for the community detection problem. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds.) HAIS 2015. LNCS (LNAI), vol. 9121, pp. 188–199. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19644-2_16
Zhou, Y., Luo, Q., Xie, J., Zheng, H.: A hybrid bat algorithm with path relinking for the capacitated vehicle routing problem. In: Yang, X.-S., Bekdaş, G., Nigdeli, S.M. (eds.) Metaheuristics and Optimization in Civil Engineering. MOST, vol. 7, pp. 255–276. Springer, Heidelberg (2016). doi:10.1007/978-3-319-26245-1_12
Saji, Y., Riffi, M.E., Ahiod, B.: Discrete bat-inspired algorithm for travelling salesman problem. In: 2014 Second World Conference on Complex Systems (WCCS), pp. 28–31. IEEE (2014)
Saji, Y., Riffi, M.E.: A novel discrete bat algorithm for solving the travelling salesman problem. Neural Comput. Appl. 27, 1–14 (2015)
Amara, J., Hamdani, T.M., Alimi, A.M.: A new hybrid discrete bat algorithm for traveling salesman problem using ordered crossover and 3-opt operators for bat’s local search. In: 2015 15th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 154–159. IEEE (2015)
Osaba, E., Yang, X.-S., Diaz, F., Lopez-Garcia, P., Carballedo, R.: An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems. Eng. Appl. Artif. Intell. 48, 59–71 (2016)
Tsai, C.-F., Dao, T.-K., Yang, W.-J., Nguyen, T.-T., Pan, T.-S.: Parallelized bat algorithm with a communication strategy. In: Ali, M., Pan, J.-S., Chen, S.-M., Horng, M.-F. (eds.) IEA/AIE 2014. LNCS (LNAI), vol. 8481, pp. 87–95. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07455-9_10
Heraguemi, K.E., Kamel, N., Drias, H.: Multi-population cooperative bat algorithm for association rule mining. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS (LNAI), vol. 9329, pp. 265–274. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24069-5_25
Jaddi, N.S., Abdullah, S., Hamdan, A.R.: Multi-population cooperative bat algorithm-based optimization of artificial neural network model. Inf. Sci. 294, 628–644 (2015)
Yang, X.-S., He, X.: Bat algorithm: literature review and applications. Int. J. Bio-Inspired Comput. 5(3), 141–149 (2013)
Goldberg, D.E.: Alleles, loci, and the traveling salesman problem. In: Proceedings of an International Conference on Genetic Algorithms and Their Applications, vol. 154, pp. 154–159. Lawrence Erlbaum, Hillsdale (1985)
Yip, P.P., Pao, Y.-H.: Combinatorial optimization with use of guided evolutionary simulated annealing. IEEE Trans. Neural Netw. 6(2), 290–295 (1995)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Al-Sorori, W., Mohsen, A.M. (2017). Multi-population Discrete Bat Algorithm with Crossover to Solve TSP. In: Abraham, A., Haqiq, A., Alimi, A., Mezzour, G., Rokbani, N., Muda, A. (eds) Proceedings of the 16th International Conference on Hybrid Intelligent Systems (HIS 2016). HIS 2016. Advances in Intelligent Systems and Computing, vol 552. Springer, Cham. https://doi.org/10.1007/978-3-319-52941-7_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-52941-7_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-52940-0
Online ISBN: 978-3-319-52941-7
eBook Packages: EngineeringEngineering (R0)