Skip to main content

Efficient Data Mining Analysis of Genomics and Clinical Data for Pharmacogenomics Applications

  • Conference paper
  • First Online:
Fuzzy Logic and Soft Computing Applications (WILF 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10147))

Included in the following conference series:

  • 1408 Accesses

Abstract

The identification of biomarkers for the estimation of cancer patients’ survival is a crucial problem in oncology. The Affymetrix DMET microarray platform allows to determine the ADME gene variants of a patient and to correlate them with drug-dependent adverse events. We present a bioinformatics tool devoted to the discovery of gene variants correlated to a different response of cancer patients to drugs and able to compute the overall survival (OS) and progression-free survival (PFS) of cancer patients. The tool is based on the integration of DMET-Miner and OSAnalyzer. DMET-Miner is a data mining tool able to extract Association Rules from DMET datasets and OSAnalyzer is a software tool able to perform an automatic analysis of DMET data enriched with survival events. After presenting DMET-Miner and OSAnalyzer, we discuss a case study to highlight the usefulness of the pipeline constituted by DMET-Miner and OSAnalyzer when analyzing a large cohort of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., Saeys, Y.: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3), 392–398 (2010)

    Article  Google Scholar 

  2. Hu, S., Arellano, M., Boontheung, P., Wang, J., Zhou, H., Jiang, J., Elashoff, D., Wei, R., Loo, J.A., Wong, D.T.: Salivary proteomics for oral cancer biomarker discovery. Clin. Cancer Res. 14(19), 6246–6252 (2008)

    Article  Google Scholar 

  3. Phillips, M., Altorki, N., Austin, J.H., Cameron, R.B., Cataneo, R.N., Greenberg, J., Kloss, R., Maxfield, R.A., Munawar, M.I., Pass, H.I., Rashid, A.: Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 3(2), 95–109 (2007)

    Article  Google Scholar 

  4. Hoyt, K., Castaneda, B., Zhang, M., Nigwekar, P., di Sant’Agnese, P.A., Joseph, J.V., Strang, J., Rubens, D.J., Parker, K.J.: Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark. 4(4,5), 213–225 (2008)

    Article  Google Scholar 

  5. Chu, W., Ghahramani, Z., Falciani, F., Wild, D.L.: Biomarker discovery in microarray gene expression data with Gaussian processes. Bioinformatics 21(16), 3385–3393 (2005)

    Article  Google Scholar 

  6. Arbitrio, M., Di Martino, M.T., Scionti, F., Agapito, G., Guzzi, P.H., Cannataro, M., Tassone, P., Tagliaferri, P.: DMET TM (Drug Metabolism Enzymes and Transporters): a pharmacogenomic platform for precision medicine. Oncotarget 7(33), 54028–54050 (2016)

    Google Scholar 

  7. Agapito, G., Guzzi, P.H., Cannataro, M.: DMET-miner: efficient discovery of association rules from pharmacogenomic data. J. Biomed. Inform. 56, 273–283 (2015)

    Article  Google Scholar 

  8. Agapito, G., Botta, C., Guzzi, P.H., Arbitrio, M., Di Martino, M.T., Tassone, P., Tagliaferri, P., Cannataro, M.: OSAnalyzer: a bioinformatics tool for the analysis of gene polymorphisms enriched with clinical outcomes. Microarrays 5(4), 24 (2016)

    Article  Google Scholar 

  9. Borgelt, C.: An implementation of the FP-growth algorithm. In: Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, pp. 1–5. ACM, August 2005

    Google Scholar 

  10. Guzzi, P.H., Agapito, G., Di Martino, M.T., Arbitrio, M., Tassone, P., Tagliaferri, P., Cannataro, M.: DMET-analyzer: automatic analysis of affymetrix DMET data. BMC Bioinform. 13(1), 258 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the following research project funded by the Italian Ministry of Education and Research (MIUR): “BA2Know-Business Analytics to Know” (PON03PE_00001_1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Cannataro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Agapito, G., Guzzi, P.H., Cannataro, M. (2017). Efficient Data Mining Analysis of Genomics and Clinical Data for Pharmacogenomics Applications. In: Petrosino, A., Loia, V., Pedrycz, W. (eds) Fuzzy Logic and Soft Computing Applications. WILF 2016. Lecture Notes in Computer Science(), vol 10147. Springer, Cham. https://doi.org/10.1007/978-3-319-52962-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52962-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52961-5

  • Online ISBN: 978-3-319-52962-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics