Abstract
The identification of biomarkers for the estimation of cancer patients’ survival is a crucial problem in oncology. The Affymetrix DMET microarray platform allows to determine the ADME gene variants of a patient and to correlate them with drug-dependent adverse events. We present a bioinformatics tool devoted to the discovery of gene variants correlated to a different response of cancer patients to drugs and able to compute the overall survival (OS) and progression-free survival (PFS) of cancer patients. The tool is based on the integration of DMET-Miner and OSAnalyzer. DMET-Miner is a data mining tool able to extract Association Rules from DMET datasets and OSAnalyzer is a software tool able to perform an automatic analysis of DMET data enriched with survival events. After presenting DMET-Miner and OSAnalyzer, we discuss a case study to highlight the usefulness of the pipeline constituted by DMET-Miner and OSAnalyzer when analyzing a large cohort of patients.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., Saeys, Y.: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3), 392–398 (2010)
Hu, S., Arellano, M., Boontheung, P., Wang, J., Zhou, H., Jiang, J., Elashoff, D., Wei, R., Loo, J.A., Wong, D.T.: Salivary proteomics for oral cancer biomarker discovery. Clin. Cancer Res. 14(19), 6246–6252 (2008)
Phillips, M., Altorki, N., Austin, J.H., Cameron, R.B., Cataneo, R.N., Greenberg, J., Kloss, R., Maxfield, R.A., Munawar, M.I., Pass, H.I., Rashid, A.: Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 3(2), 95–109 (2007)
Hoyt, K., Castaneda, B., Zhang, M., Nigwekar, P., di Sant’Agnese, P.A., Joseph, J.V., Strang, J., Rubens, D.J., Parker, K.J.: Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark. 4(4,5), 213–225 (2008)
Chu, W., Ghahramani, Z., Falciani, F., Wild, D.L.: Biomarker discovery in microarray gene expression data with Gaussian processes. Bioinformatics 21(16), 3385–3393 (2005)
Arbitrio, M., Di Martino, M.T., Scionti, F., Agapito, G., Guzzi, P.H., Cannataro, M., Tassone, P., Tagliaferri, P.: DMET TM (Drug Metabolism Enzymes and Transporters): a pharmacogenomic platform for precision medicine. Oncotarget 7(33), 54028–54050 (2016)
Agapito, G., Guzzi, P.H., Cannataro, M.: DMET-miner: efficient discovery of association rules from pharmacogenomic data. J. Biomed. Inform. 56, 273–283 (2015)
Agapito, G., Botta, C., Guzzi, P.H., Arbitrio, M., Di Martino, M.T., Tassone, P., Tagliaferri, P., Cannataro, M.: OSAnalyzer: a bioinformatics tool for the analysis of gene polymorphisms enriched with clinical outcomes. Microarrays 5(4), 24 (2016)
Borgelt, C.: An implementation of the FP-growth algorithm. In: Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, pp. 1–5. ACM, August 2005
Guzzi, P.H., Agapito, G., Di Martino, M.T., Arbitrio, M., Tassone, P., Tagliaferri, P., Cannataro, M.: DMET-analyzer: automatic analysis of affymetrix DMET data. BMC Bioinform. 13(1), 258 (2012)
Acknowledgments
This work has been partially funded by the following research project funded by the Italian Ministry of Education and Research (MIUR): “BA2Know-Business Analytics to Know” (PON03PE_00001_1).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Agapito, G., Guzzi, P.H., Cannataro, M. (2017). Efficient Data Mining Analysis of Genomics and Clinical Data for Pharmacogenomics Applications. In: Petrosino, A., Loia, V., Pedrycz, W. (eds) Fuzzy Logic and Soft Computing Applications. WILF 2016. Lecture Notes in Computer Science(), vol 10147. Springer, Cham. https://doi.org/10.1007/978-3-319-52962-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-52962-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-52961-5
Online ISBN: 978-3-319-52962-2
eBook Packages: Computer ScienceComputer Science (R0)