Abstract
We present our results on the adoption of a set theoretic framework for Granular Computing in the domain of Situation Awareness. Specifically, we present two cases of reasoning with granules and granular structures devoted, respectively, to support human operators in (i) classifying situations on the basis of a set of incomplete observations using abductive reasoning, and (ii) obtaining early warning information on situation projections reasoning on granular structures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
D’Aniello, G., Gaeta, A., Loia, V., Orciuoli, F.: Integrating GSO and saw ontologies to enable situation awareness in green fleet management. In: 2016 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), pp. 138–144 (2016)
D’Aniello, G., Gaeta, A., Gaeta, M., Lepore, M., Orciuoli, F., Troisi, O., et al.: A new dss based on situation awareness for smart commerce environments. J. Ambient Intell. Humanized Comput. 7(1), 47–61 (2016)
D’Aniello, G., Gaeta, A., Gaeta, M., Loia, V., Reformat, M.Z.: Application of granular computing and three-way decisions to analysis of competing hypotheses. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016), Budapest, Hungary, pp. 1650–1655. IEEE (2016)
D’Aniello, G., Gaeta, A., Loia, V., Orciuoli, F.: A granular computing framework for approximate reasoning in situation awareness. Granular Comput., 1–18 (2016). doi:10.1007/s41066-016-0035-0
Endsley, M.R.: Designing for Situation Awareness: An Approach to User-Centered Design. CRC Press, Boca Raton (2011)
Liang, J.: Uncertainty and feature selection in rough set theory. In: Yao, J.T., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 8–15. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24425-4_2
Loia, V., D’Aniello, G., Gaeta, A., Orciuoli, F.: Enforcing situation awareness with granular computing: a systematic overview and new perspectives. Granular Comput. 1(2), 127–143 (2016)
Qian, Y., Li, Y., Liang, J., Lin, G., Dang, C.: Fuzzy granular structure distance. IEEE Trans. Fuzzy Syst. 23(6), 2245–2259 (2015)
Yao, Y.: The superiority of three-way decisions in probabilistic rough set models. Inf. Sci. 181(6), 1080–1096 (2011)
Yao, Y.: A triarchic theory of granular computing. Granular Comput. 1(2), 145–157 (2016)
Yao, Y.: Granular computing using neighborhood systems. In: Roy, R., Furuhashi, T., Chawdhry, P.K. (eds.) Advances in Soft Computing, pp. 539–553. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Gaeta, A., Loia, V., Orciuoli, F. (2017). Reasoning with Information Granules to Support Situation Classification and Projection in SA. In: Petrosino, A., Loia, V., Pedrycz, W. (eds) Fuzzy Logic and Soft Computing Applications. WILF 2016. Lecture Notes in Computer Science(), vol 10147. Springer, Cham. https://doi.org/10.1007/978-3-319-52962-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-52962-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-52961-5
Online ISBN: 978-3-319-52962-2
eBook Packages: Computer ScienceComputer Science (R0)