Abstract
As recently been emphasized by NSA and NIST, there is an increasing need for cryptographic schemes being secure against quantum computer attacks. Especially in the area of digital signature schemes, multivariate cryptography is one of the main candidates for this. At Inscrypt 2015, Nie et al. proposed a new multivariate signature scheme called CUOV [20], whose public key consists both of quadratic and cubic polynomials. However, the scheme was broken by an attack of Hashimoto [15]. In this paper we take a closer look on the CUOV scheme and its attack and propose two new multivariate signature schemes called CSSv and SVSv, which are secure against Hashimoto’s attack and all other known attacks on multivariate schemes. Especially our second construction SVSv is very efficient and outperforms current multivariate signature schemes such as UOV and Rainbow in terms of key and signature size.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In contrast to the standard construction of multivariate cryptography (see above), Nie et al. did not use a second affine map \(\mathcal T\). The reason for this is that \(\mathcal T\) would turn the public key into a completely cubic map and therefore increase the key size drastically.
- 2.
- 3.
By doing so, we do not have to distinguish between a quadratic form of rank v and a quadratic form in v variables.
- 4.
The design of our scheme is inspired by the SimpleMatrix scheme [26]. Hence the name.
- 5.
The reason for using the parameter r is to ensure that all components of the central map have the same rank (see Sect. 3.2). For the case of \((q \mathrm{~ mod~}2) = (v \mathrm{~mod~}2) =0\), we use \(r=2\), otherwise \(r=1\).
References
Billet, O., Gilbert, H.: Cryptanalysis of rainbow. In: Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006). doi:10.1007/11832072_23
Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-key engines: \(\cal{MQ}\)-cryptosystems as replacement for elliptic curves? In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3_4
Bosma, W., Cannon, J., Playoust, C.: The magma algebra system I: the user language. J. Symbolic Comput. 24(3), 235–265 (1997)
Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern \(\times \)86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9_3
Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., Smith-Tone, D.: Report on post-quantum cryptography. National Institute of Standards and Technology Internal Report, 8105 (2016)
Coppersmith, D., Stern, J., Vaudenay, S.: Attacks on the birational permutation signature schemes. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 435–443. Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2_37
Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). doi:10.1007/11496137_12
Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68914-0_15
Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanalysis of SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5_1
Faugere, J.-C.: A new efficient algorithm for computing Gröbner bases (f4). J. Pure Appl. Algebra 139(1), 61–88 (1999)
Fouque, P.-A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353. Springer, Heidelberg (2005). doi:10.1007/11426639_20
Garey, M.R., Johnson, D.S.: A Guide to the Theory of NP-Completeness. WH Freemann, New York (1979)
Goodin, D.: NSA preps quantum-resistant algorithms to head off cryptoapocalypse
Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000). doi:10.1007/3-540-44448-3_4
Hashimoto, Y.: On the security of cubic UOV
Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_15
Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
Kravitz, D.W.: Digital signature algorithm, 27 July 1993. US Patent 5,231,668
Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). doi:10.1007/3-540-45961-8_39
Nie, X., Liu, B., Xiong, H., Lu, G.: Cubic unbalance oil and vinegar signature scheme. In: Lin, D., Wang, X.F., Yung, M. (eds.) Inscrypt 2015. LNCS, vol. 9589, pp. 47–56. Springer, Heidelberg (2016). doi:10.1007/978-3-319-38898-4_3
Patarin, J.: Cryptanalysis of the matsumoto and imai public key scheme of eurocrypt 88. In Annual International Cryptology Conference, pp. 248–261. Springer, 1995
Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9_4
Patarin, J., Courtois, N., Goubin, L.: FLASH, a fast multivariate signature algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307. Springer, Heidelberg (2001). doi:10.1007/3-540-45353-9_22
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)
Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38616-9_16
Acknowledgments
The first and second author thank the Japanese Society for the Promotion of Science (JSPS) for financial support under grant KAKENHI 16K17644 and 15F15350.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Experiments with MAGMA
A Experiments with MAGMA
In this section we present the results of our experiments with the direct attack against the CSSv and SVSv schemes. For our experiments we created, for \(K=\) GF(256) and different values of o and v, public systems of CSSv and SVSv in MAGMA [3] code. We then fixed v (resp. \(v+r\) in the case of SVSv) of the variables to create determined systems and solved these using the F4 algorithm [10] integrated in MAGMA. Tables 2 and 3 show the degree of regularity of the corresponding systems. For each of the parameter sets listed in the table we performed 10 experiments.
As the experiments show, the public systems of both CSSv and SVSv behave, for \(o=2 \cdot v\), very similar to random systems. On the other hand, for smaller values of v, the public systems are significantly easier to solve.
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Duong, D.H., Petzoldt, A., Wang, Y., Takagi, T. (2017). Revisiting the Cubic UOV Signature Scheme. In: Hong, S., Park, J. (eds) Information Security and Cryptology – ICISC 2016. ICISC 2016. Lecture Notes in Computer Science(), vol 10157. Springer, Cham. https://doi.org/10.1007/978-3-319-53177-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-53177-9_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53176-2
Online ISBN: 978-3-319-53177-9
eBook Packages: Computer ScienceComputer Science (R0)