Abstract
Eliciting representative membership functions is one of the fundamental steps in applications of fuzzy theory. This paper investigates an unsupervised approach that incorporates variable bandwidth mean-shift and robust statistics for generating fuzzy membership functions. The approach automatically learns the number of representative functions from the underlying data distribution. Given a specific membership function, the approach then works out the associated parameters of the specific membership function. Our evaluation of the proposed approach consists of comparisons with two other techniques in terms of (i) parameterising MFs for attributes with different distributions, and (ii) classification performance of a fuzzy rule set that was developed using the parameterised output of these techniques. This evaluation involved its application using the trapezoidal and the triangular membership functions. Results demonstrate that the generated membership functions can better separate the underlying distributions and classifiers constructed using the proposed method of generating membership function outperformed three other classifiers that used different approaches for parameterisation of the attributes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Medasani, S., Kim, J., Krishnapuram, R.: An overview of membership function generation techniques for pattern recognition. Int. J. Approx. Reason. 19(3), 391–417 (1998)
Seki, H.: Fuzzy inference based non-daily behavior pattern detection for elderly people monitoring system. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 6187–6192. IEEE (2009)
Moeinzadeh, H., et al.: Improving classification accuracy using evolutionary fuzzy transformation. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers. ACM (2009)
Amaral, T.G., Crisóstomo, M.M.: Automatic helicopter motion control using fuzzy logic. In: 2001 The 10th IEEE International Conference on Fuzzy Systems. IEEE (2001)
Tang, K., Man, K., Chan, C.: Fuzzy control of water pressure using genetic algorithm. In: Proceedings of the Safety, Reliability and Applications of Emerging Intelligent Control Technologies (2014)
Takagi, H., Hayashi, I.: NN-driven fuzzy reasoning. Int. J. Approx. Reason. 5(3), 191–212 (1991)
Pazhoumand-Dar, H., Lam, C.P., Masek, M.: A novel fuzzy based home occupant monitoring system using kinect cameras. In: IEEE 27th International Conference on Tools with Artificial Intelligence, Vietri sul Mare, Italy (2015)
Kuok, C.M., Fu, A., Wong, M.H.: Mining fuzzy association rules in databases. ACM Sigmod Rec. 27(1), 41–46 (1998)
Doctor, F., Iqbal, R., Naguib, R.N.: A fuzzy ambient intelligent agents approach for monitoring disease progression of dementia patients. J. Ambient Intell. Humaniz. Comput. 5(1), 147–158 (2014)
Castellano, G., Fanelli, A., Mencar, C.: Generation of interpretable fuzzy granules by a double-clustering technique. Arch. Control Sci. 12(4), 397–410 (2002)
Hubert, M., Vandervieren, E.: An adjusted boxplot for skewed distributions. Comput. Stat. Data Anal. 52(12), 5186–5201 (2008)
Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and data-driven scale selection. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001. IEEE (2001)
Pazhoumand-Dar, H., Lam, C.P., Masek, M.: Automatic generation of fuzzy membership functions using adaptive mean-shift and robust statistics. In: Proceedings of the 8th International Conference on Agents and Artificial Intelligence, Italy (2016)
Rousseeuw, P.J., Hubert, M.: Robust statistics for outlier detection. Wiley Interdisc. Rev. Data Mining Knowl. Discov. 1(1), 73–79 (2011)
Brys, G., Hubert, M., Struyf, A.: A robust measure of skewness. J. Comput. Graphical Stat. 13(4), 996–1017 (2004)
Sheather, S.J., Jones, M.C.: A reliable data-based bandwidth selection method for kernel density estimation. J. R. Stat. Soc. Ser. B (Methodol.) 53, 683–690 (1991)
Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 10(2), 191–203 (1984)
Tajbakhsh, A., Rahmati, M., Mirzaei, A.: Intrusion detection using fuzzy association rules. Appl. Soft Comput. 9(2), 462–469 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Pazhoumand-Dar, H., Lam, C.P., Masek, M. (2017). An Automatic Approach for Generation of Fuzzy Membership Functions. In: van den Herik, J., Filipe, J. (eds) Agents and Artificial Intelligence. ICAART 2016. Lecture Notes in Computer Science(), vol 10162. Springer, Cham. https://doi.org/10.1007/978-3-319-53354-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-53354-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53353-7
Online ISBN: 978-3-319-53354-4
eBook Packages: Computer ScienceComputer Science (R0)