Skip to main content

Detecting Hidden Objects Using Efficient Spatio-Temporal Knowledge Representation

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10162))

Included in the following conference series:

Abstract

Detecting visible as well as invisible objects of interest in real-world scenes is crucial in new-generation video-surveillance. For this purpose, we design a fully intelligent system incorporating semantic, symbolic, and grounded information. In particular, we conceptualize temporal representations we use together with spatial and visual information in our multi-view tracking system. It uses them for automated reasoning and induction of knowledge about the multiple views of the studied scene, in order to automatically detect salient or hidden objects of interest. Tests on standard datasets demonstrated the efficiency and accuracy of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albanese, M., Molinaro, C., Persia, F., Picariello, A., Subrahmanian, V.S.: Finding unexplained activities in video. In: Proceedings of the AAAI International Joint Conference on Artificial Intelligence, pp. 1628–1634 (2011)

    Google Scholar 

  2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  3. Bai, L., Lao, S., Jones, G.J.F., Smeaton, A.F.: Video semantic content analysis based on ontology. In: Proceedings of the IEEE International Machine Vision and Image Processing Conference, pp. 117–124 (2007)

    Google Scholar 

  4. Berclaz, J., Fleuret, F., Tueretken, E., Fua, P.: Multiple object tracking using K-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1806–1819 (2011)

    Google Scholar 

  5. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. 2008, 1–10 (2008)

    Article  Google Scholar 

  6. Bhat, M., Olszewska, J.I.: DALES: automated tool for detection, annotation, labelling and segmentation of multiple objects in multi-camera video streams. In: Proceedings of the ACL International Conference on Computational Linguistics Workshop, pp. 87–94 (2014)

    Google Scholar 

  7. Chen, L., Wei, H., Ferryman, J.: ReadingAct RGB-D action dataset and human action recognition from local features. Pattern Recogn. Lett. 50, 159–169 (2014)

    Article  Google Scholar 

  8. Dai, X., Payandeh, S.: Geometry-based object association and consistent labeling in multi-camera surveillance. IEEE J. Emerg. Sel. Top. Circ. Syst. 3(2), 175–184 (2013)

    Article  Google Scholar 

  9. Evans, M., Osborne, C.J., Ferryman, J.: Multicamera object detection and tracking with object size estimation. In: Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 177–182 (2013)

    Google Scholar 

  10. Ferrari, V., Tuytelaars, T., Gool, L.V.: Simultaneous object recognition and segmentation from single or multiple model views. Int. J. Comput. Vis. 67(2), 159–188 (2006)

    Article  Google Scholar 

  11. Ferryman, J., Hogg, D., Sochman, J., Behera, A., Rodriguez-Serrano, J.A., Worgan, S., Li, L., Leung, V., Evans, M., Cornic, P., Herbin, S., Schlenger, S., Dose, M.: Robust abandoned object detection integrating wide area visual surveillance and social context. Pattern Recogn. Lett. 34(7), 789–798 (2013)

    Article  Google Scholar 

  12. Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera people tracking with a probabilistic occupancy map. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 267–282 (2008)

    Article  Google Scholar 

  13. Fookes, C., Denman, S., Lakemond, R., Ryan, D., Sridharan, S., Piccardi, M.: Semi-supervised intelligent surveillance system for secure environments. In: Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 2815–2820 (2010)

    Google Scholar 

  14. Gomez-Romero, J., Patricio, M.A., Garcia, J., Molina, J.M.: Ontology-based context representation and reasoning for object tracking and scene interpretation in video. Expert Syst. Appl. 38(6), 7494–7510 (2011)

    Article  Google Scholar 

  15. Jeong, J.W., Hong, H.K., Lee, D.H.: Ontology-based automatic video annotation technique in smart TV environment. IEEE Trans. Consum. Electron. 57(4), 1830–1836 (2011)

    Article  Google Scholar 

  16. Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Boonstra, M., Korzhova, V., Zhang, J.: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 319–336 (2009)

    Article  Google Scholar 

  17. Kowaslki, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput. 4, 6795 (1986)

    Google Scholar 

  18. Lehmann, J., Neumann, B., Bohlken, W., Hotz, L.: A robot waiter that predicts events by high-level scene interpretation. In: Proceedings of the International Conference on Agents and Artificial Intelligence, pp. I.469–I.476 (2014)

    Google Scholar 

  19. Mavrinac, A., Chen, X.: Modeling coverage in camera networks: a survey. Int. J. Comput. Vis. 101(1), 205–226 (2013)

    Article  MathSciNet  Google Scholar 

  20. Natarajan, P., Nevatia, R.: EDF: a framework for semantic annotation of video. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW 2005) (2005)

    Google Scholar 

  21. Olszewska, J.I.: Multi-target parametric active contours to support ontological domain representation. In: Proceedings of the RFIA Conference, pp. 779–784 (2012)

    Google Scholar 

  22. Olszewska, J.I.: Multi-scale, multi-feature vector flow active contours for automatic multiple-face detection. In: Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing (2013)

    Google Scholar 

  23. Olszewska, J.I.: Multi-camera video object recognition using active contours. In: Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, pp. 379–384 (2015)

    Google Scholar 

  24. Olszewska, J.I., McCluskey, T.L.: Ontology-coupled active contours for dynamic video scene understanding. In: Proceedings of the IEEE International Conference on Intelligent Engineering Systems, pp. 369–374 (2011)

    Google Scholar 

  25. Olszewska, J.: Tracking the invisible man - knowledge-based detection of hidden objects for complex visual scene understanding. In: Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART 2016), pp. 223–229 (2016)

    Google Scholar 

  26. Park, H.-S., Cho, S.-B.: A fuzzy rule-based system with ontology for summarization of multi-camera event sequences. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 850–860. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69731-2_81

    Chapter  Google Scholar 

  27. Remagnino, P., Shihab, A.I., Jones, G.A.: Distributed intelligence for multi-camera visual surveillance. Pattern Recogn. 37(4), 675–689 (2004)

    Article  Google Scholar 

  28. Riboni, D., Bettini, C.: COSAR: hybrid reasoning for context-aware activity recognition. Pers. Ubiquitous Comput. 15(3), 271–289 (2011)

    Article  Google Scholar 

  29. Ryoo, M.S., Aggarwal, J.K.: Semantic understanding of continued and recursive human activities. In: Proceedings of the IEEE International Conference on Pattern Recognition (ICPR 2006) (2006)

    Google Scholar 

  30. Sridhar, M., Cohn, A.G., Hogg, D.C.: Unsupervised learning of event classes from video. In: Proceedings of the AAAI International Conference on Artificial Intelligence, pp. 1631–1638 (2010)

    Google Scholar 

  31. Vrusias, B., Makris, D., Renno, J.P., Newbold, N., Ahmad, K., Jones, G.: A framework for ontology enriched semantic annotation of CCTV video. In: Proceedings of the IEEE International Workshop on Image Analysis for Multimedia Interactive Services, p. 5 (2007)

    Google Scholar 

  32. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Isabelle Olszewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Olszewska, J.I. (2017). Detecting Hidden Objects Using Efficient Spatio-Temporal Knowledge Representation. In: van den Herik, J., Filipe, J. (eds) Agents and Artificial Intelligence. ICAART 2016. Lecture Notes in Computer Science(), vol 10162. Springer, Cham. https://doi.org/10.1007/978-3-319-53354-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53354-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53353-7

  • Online ISBN: 978-3-319-53354-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics