Abstract
Sensor pattern noise (SPN) has been widely used in source camera identification. However, the SPN extracted from natural image may be contaminated by its content and eventually introduce side effect to the identification accuracy. In this paper, an effective source camera identification scheme based on guided image estimation and block weighted average is proposed. Before the SPN extraction, an adaptive SPN estimator based on image content is implemented to reduce the influence of image scene and improve the quality of the SPN. Furthermore, a novel camera reference SPN construction method is put forward by using some ordinary images, instead of the blue sky images in previous schemes, and a block weighted average approach is used to suppress the influence of the image scenes in the reference SPN. Experimental results and analysis indicate that the proposed method can effectively identify the source of the natural image, especially in actual forensics environment with a small number of images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Choi, S., Lam, E.Y., Wong, K.K.Y.: Source camera identification using footprints from lens aberration. In: Proceedings of SPIE (2006)
Johnson, M.K., Farid, H.: Exposing digital forgeries through chromatic aberration. In: ACM Multimedia and Security Workshop, Geneva, Switzerland (2006)
Popescu, A.C., Farid, H.: Exposing digital forgeries in color filter array interpolated images. IEEE Trans. Signal Process. 53(10), 3948–3959 (2005)
Lukásˇ, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)
Sutcu, Y., Batram, S.H., Sencar, T., Memon, N.: Improvements on sensor noise based source camera identification. In: Proceedings of IEEE International Conference on Multimedia and Expo, Beijing, China, 2––5 July, pp. 24––27 (2007)
Chen, M., Fridrich, J., Goljan, M., Lukásˇ, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)
Li, C.T.: Source camera identification using enhanced sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 5(2), 280–287 (2010)
Fridrich, J.: Sensor defects in digital image forensic. In: Senkar, H.T., Memon, N. (eds.) Digital Image Forensics, pp. 179–218. Springer, Heidelberg (2012)
Lin, X., Li, C.T.: Preprocessing reference sensor pattern noise via spectrum equalization. IEEE Trans. Inf. Forensics Secur. 11(1), 126–140 (2016)
Chierchia, G., Parrilli, S., Poggi, G., Sansone, C., Verdoliva, L.: On the influence of denoising in PRNU based forgery detection. In: Proceedings of 2nd ACM Workshop on Multimedia Forensics, Security and Intelligence, pp. 117–122, New York, NY, USA (2010)
Kang, X., Chen, J., Lin, K., Anjie, P.: A context-adaptive SPN predictor for trustworthy source camera identification. EURASIP J. Image Video Process. 2014(1), 1–11 (2014)
Zeng, H., Kang, X.: Fast source camera identification using content adaptive guided image filter. J. Forensic Sci. 61(2), 520–526 (2016)
Satta, R.: Sensor Pattern Noise matching based on reliability map for source camera identification. In: Proceedings of 10th International Conference on Computer Vision Theory and Applications (VISAPP 2015), Berlin, Germany (2015)
Sorrell, M.J.: Digital camera source identification through JPEG quantisation. In: Multimedia Forensics and Security Information Science Reference, Hershey (2008)
Alles, E.J., Geradts, Z.J.M.H., Veenman, C.J.: Source camera identification for heavily JPEG compressed low resolution still images. J. Forensic Sci. 54(3), 628–638 (2009)
Sankur, B., Celiktutan, O. Avcibas, I.: Blind identification of cell phone cameras. In: Proceedings of SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, San Jose, CA, 29 January–1 February, pp. 1H–1I (2007)
Sutthiwan, P., Ye, J., Shi, Y.Q.: An enhanced statistical approach to identifying photorealistic images. In: Ho, A.T.S., Shi, Y.Q., Kim, H.J., Barni, M. (eds.) IWDW 2009. LNCS, vol. 5703, pp. 323–335. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03688-0_28
Chierchia, G., Parrilli, S., Poggi, G., Verdoliva, L., Sansone, C.: PRNU-based detection of small-size image forgeries. In: International Conference on Digital Signal Processing (DSP), pp. 1–6 (2011)
Chierchia, G., Poggi, G., Sansone, C., Verdoliva, L.: A Bayesian-MRF approach for PRNU-based image forgery detection. IEEE Trans. Inf. Forensics Secur. 9(4), 554–567 (2014)
Goljan, M.: Digital camera identification from images –– estimating false acceptance probability. In: Kim, H.-J., Katzenbeisser, S., Ho, Anthony, T.,S. (eds.) IWDW 2008. LNCS, vol. 5450, pp. 454–468. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04438-0_38
Kang, X., Li, Y., Qu, Z., Huang, J.: Enhancing source camera identification performance with a camera reference phase sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 7(2), 393–402 (2012)
Goljan, M., Chen, M., Comesana, P., Fridrich, J.: Effect of compression on sensor-fingerprint based camera identification. In: Proceedings of Electronic Imaging, Media Watermarking, Security Forensics, San Francisco, CA (2016)
Valsesia, D., Coluccia, G., Bianchi, T., Magli, E.: Compressed fingerprint matching and camera identification via random projections. IEEE Trans. Inf. Forensics Secur. 10(7), 1472–1485 (2015)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)
He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409, (2013)
Gloe, T., Pfennig, S., Kirchner, M.: Unexpected artefacts in PRNU-based camera identification: a ‘Dresden image database’ case-study. In: Proceedings of ACM Workshop Multimedia Secur. pp. 109–114 (2012)
Dresden Image Database, (Technische Universitaet Dresden, Dresden, 2009–2014). http://forensics.inf.tu-dresden.de/ddimgdb. Accessed 3 May 2013
Acknowledgments
This work was supported in part by project supported by National Natural Science Foundation of China (Grant Nos. 61572182, 61370225), project supported by Hunan Provincial Natural Science Foundation of China (Grant No. 15JJ2007), and supported by the Scientific Research Plan of Hunan Provincial Science and Technology Department of China (2014FJ4161).
The authors thank Prof. Xiangui Kang from Sun Yat-sen University for providing the source code of CAGIF method.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zhang, LB., Peng, F., Long, M. (2017). Source Camera Identification Based on Guided Image Estimation and Block Weighted Average. In: Shi, Y., Kim, H., Perez-Gonzalez, F., Liu, F. (eds) Digital Forensics and Watermarking. IWDW 2016. Lecture Notes in Computer Science(), vol 10082. Springer, Cham. https://doi.org/10.1007/978-3-319-53465-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-53465-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53464-0
Online ISBN: 978-3-319-53465-7
eBook Packages: Computer ScienceComputer Science (R0)