Abstract
With the development of the brain cognition science and big data technologies, effective graph clustering is a key technique to uncover the brain mechanism, especially in resting state functional connectivity analysis. In this paper, a combinatorial structural clustering (CSC) algorithm is proposed for large scale networks. A structural similarity feature from adjacency structures of outliers and hubs is introduced to brain functional connectivity networks. Experimental results illustrate that our approach has some advantages compared with SCAN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: Scan: a structural clustering algorithm for networks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824–833 (2007)
Polan, R., Nitsche, M.A., Paulus, W.: Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum. Brain Mapp. 32(8), 1236–1249 (2011). S318
Lynall, M.E., Bassett, D.S., Kerwin, R., Mckenna, P.J., Kitzbichler, M., Mller, U., Bullmore, E.: Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30(28), 9477–9487 (2010)
Nascimento, M.C.V., de Carvalho, A.C.: Spectral methods for graph clustering - a survey. Euro. J. Oper. Res. 211(2), 221–231 (2011)
Pulvermller, F., Kherif, F., Hauk, O., Mohr, B., Nimmo-Smith, I.: Distributed cell assemblies for general lexical and category-specific semantic processing as revealed by fMRI cluster analysis. Hum. Brain Mapp. 30(12), 3837–3850 (2009)
Wang, J., Qiu, S., Xu, Y., Liu, Z., Wen, X., Hu, X., Zhang, R., Li, M., Wang, W., Huang, R.: Graph theoretical analysis reveals disrupted topological properties of whole brain functional networks in temporal lobe epilepsy. Clin. Neurophysiol. 125(9), 1744–1756 (2014). Official Journal of the International Federation of Clinical Neurophysiology
Greicius, M.D., Ben, K., Reiss, A.L., Vinod, M.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 100(1), 253–258 (2003)
Shiokawa, H., Fujiwara, Y., Onizuka, M.: Scan++. Proc. Vldb Endow. 8(11), 1178–1189 (2015)
Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–98 (2001)
Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)
Horovitz, S.G., Fukunaga, M., de Zwart, J.A., van Gelderen, P., Fulton, S.C., Balkin, T.J., Duyn, J.H.: Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum. Brain Mapp. 29(6), 671–682 (2008)
Van Dijk, K.R., Tvenkataraman, H.: Intrinsic functional connectivity as a tool for human connectomics: theory, properties and optimization. J. Neurophysiol. 103(1), 297–321 (2009)
Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2(4), 189–210 (1994)
Yan, C.G., Zang, Y.F.: DPARSF: a matlab toolbox for pipeline data analysis of resting-state fMRI. Front. Syst. Neurosci. 4, 13 (2010)
Granovetter, M.S.: The strength of weak ties. Soc. Sci. Electron. Publ. 78(2), 1360–1380 (2015)
Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)
Whitfield-Gabrieli, S., Ford, J.M.: Default mode network activity and connectivity in psychopathology. Ann. Rev. Clin. Psychol. 8(1), 49–76 (2011)
Greicius, M.D., Supekar, K., Menon, V., Dougherty, R.F.: Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19(1), 72–78 (2009)
Chen, N.K., Chou, Y.H., Song, A.W., Madden, D.J.: Measurement of spontaneous signal fluctuations in fMRI: adult age differences in intrinsic functional connectivity. Brain Struct. Funct. 213(6), 571–585 (2009)
Acknowledgments
This work is partly supported by the National Natural Science Foundation of China (Grant No. 61472058), and the Fundamental Research Funds for the Central Universities (Grant No. 3132016027).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Chen, L., Liu, H., Zhang, W., Zhang, B. (2017). Combinatorial Structural Clustering (CSC): A Novel Structural Clustering Approach for Large Scale Networks. In: Madureira, A., Abraham, A., Gamboa, D., Novais, P. (eds) Intelligent Systems Design and Applications. ISDA 2016. Advances in Intelligent Systems and Computing, vol 557. Springer, Cham. https://doi.org/10.1007/978-3-319-53480-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-53480-0_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53479-4
Online ISBN: 978-3-319-53480-0
eBook Packages: EngineeringEngineering (R0)