Skip to main content

Combinatorial Structural Clustering (CSC): A Novel Structural Clustering Approach for Large Scale Networks

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 557))

  • 1719 Accesses

Abstract

With the development of the brain cognition science and big data technologies, effective graph clustering is a key technique to uncover the brain mechanism, especially in resting state functional connectivity analysis. In this paper, a combinatorial structural clustering (CSC) algorithm is proposed for large scale networks. A structural similarity feature from adjacency structures of outliers and hubs is introduced to brain functional connectivity networks. Experimental results illustrate that our approach has some advantages compared with SCAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: Scan: a structural clustering algorithm for networks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824–833 (2007)

    Google Scholar 

  2. Polan, R., Nitsche, M.A., Paulus, W.: Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum. Brain Mapp. 32(8), 1236–1249 (2011). S318

    Article  Google Scholar 

  3. Lynall, M.E., Bassett, D.S., Kerwin, R., Mckenna, P.J., Kitzbichler, M., Mller, U., Bullmore, E.: Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30(28), 9477–9487 (2010)

    Article  Google Scholar 

  4. Nascimento, M.C.V., de Carvalho, A.C.: Spectral methods for graph clustering - a survey. Euro. J. Oper. Res. 211(2), 221–231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pulvermller, F., Kherif, F., Hauk, O., Mohr, B., Nimmo-Smith, I.: Distributed cell assemblies for general lexical and category-specific semantic processing as revealed by fMRI cluster analysis. Hum. Brain Mapp. 30(12), 3837–3850 (2009)

    Article  Google Scholar 

  6. Wang, J., Qiu, S., Xu, Y., Liu, Z., Wen, X., Hu, X., Zhang, R., Li, M., Wang, W., Huang, R.: Graph theoretical analysis reveals disrupted topological properties of whole brain functional networks in temporal lobe epilepsy. Clin. Neurophysiol. 125(9), 1744–1756 (2014). Official Journal of the International Federation of Clinical Neurophysiology

    Article  Google Scholar 

  7. Greicius, M.D., Ben, K., Reiss, A.L., Vinod, M.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 100(1), 253–258 (2003)

    Article  Google Scholar 

  8. Shiokawa, H., Fujiwara, Y., Onizuka, M.: Scan++. Proc. Vldb Endow. 8(11), 1178–1189 (2015)

    Article  Google Scholar 

  9. Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–98 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  11. Horovitz, S.G., Fukunaga, M., de Zwart, J.A., van Gelderen, P., Fulton, S.C., Balkin, T.J., Duyn, J.H.: Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum. Brain Mapp. 29(6), 671–682 (2008)

    Article  Google Scholar 

  12. Van Dijk, K.R., Tvenkataraman, H.: Intrinsic functional connectivity as a tool for human connectomics: theory, properties and optimization. J. Neurophysiol. 103(1), 297–321 (2009)

    Article  Google Scholar 

  13. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2(4), 189–210 (1994)

    Article  Google Scholar 

  14. Yan, C.G., Zang, Y.F.: DPARSF: a matlab toolbox for pipeline data analysis of resting-state fMRI. Front. Syst. Neurosci. 4, 13 (2010)

    Google Scholar 

  15. Granovetter, M.S.: The strength of weak ties. Soc. Sci. Electron. Publ. 78(2), 1360–1380 (2015)

    Google Scholar 

  16. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  17. Whitfield-Gabrieli, S., Ford, J.M.: Default mode network activity and connectivity in psychopathology. Ann. Rev. Clin. Psychol. 8(1), 49–76 (2011)

    Article  Google Scholar 

  18. Greicius, M.D., Supekar, K., Menon, V., Dougherty, R.F.: Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19(1), 72–78 (2009)

    Article  Google Scholar 

  19. Chen, N.K., Chou, Y.H., Song, A.W., Madden, D.J.: Measurement of spontaneous signal fluctuations in fMRI: adult age differences in intrinsic functional connectivity. Brain Struct. Funct. 213(6), 571–585 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partly supported by the National Natural Science Foundation of China (Grant No. 61472058), and the Fundamental Research Funds for the Central Universities (Grant No. 3132016027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, L., Liu, H., Zhang, W., Zhang, B. (2017). Combinatorial Structural Clustering (CSC): A Novel Structural Clustering Approach for Large Scale Networks. In: Madureira, A., Abraham, A., Gamboa, D., Novais, P. (eds) Intelligent Systems Design and Applications. ISDA 2016. Advances in Intelligent Systems and Computing, vol 557. Springer, Cham. https://doi.org/10.1007/978-3-319-53480-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53480-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53479-4

  • Online ISBN: 978-3-319-53480-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics