Abstract
Multi-objective optimization evolutionary techniques provide solutions for a specific problem using optimally concepts taking into consideration all the design criteria. In the last years, several multi-objective algorithms were proposed but usually the performance is measured at the end neglecting, therefore, the solution diversity along the interactions. In order to understand the evolution of the solutions this work studies the dynamic of the successive iterations. The analysis adopts the fractional entropy for measuring the statistical behavior of the population. The results show that the entropy is a good tool to monitor and capture phenomena such as the diversity and convergence during the algorithm execution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ben-Naim, A.: Entropy and the Second Law: Interpretation and Misss-Interpretations. World Scientific Publishing Company (2012)
Coello Coello, C.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1(1), 28–36 (2006)
Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). doi:10.1007/3-540-45356-3_83
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Fogel, D.B., El-Sharkawi, M.A., Yao, X., Greenwood, G., Iba, H., Marrow, P., Shackleton, M. (eds.) Proceedings of the 2002 Congress on Evolutionary Computation, CEC2002, pp. 825–830. IEEE Press (2002)
Derrac, J., Garca, S., Molina, D., Herrera, F.: A practical tutorial on theuse of nonparametric statistical tests as a methodology for comparing evolu-tionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011). http://www.sciencedirect.com/science/article/pii/S2210650211000034
Gement, A.: On fractional differentials. Proc. Philos. Mag. 25, 540–549 (1938)
Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002). http://dx.doi.org/10.1162/106365602760234108
LinLin, W., Yunfang, C.: Diversity based on entropy: a novel evaluation criterion in multi-objective optimization algorithm. Int. J. Intell. Syst. Appl. 4(10), 113–124 (2012)
Machado, J.T.: Fractional order generalized information. Entropy 16(4), 2350–2361 (2014). http://www.mdpi.com/1099-4300/16/4/2350
Méhauté, A.L.: Fractal Geometries: Theory and Applications. Penton Press, London (1991)
Myers, R., Hancock, E.R.: Genetic algorithms for ambiguous labelling problems. Pattern Recogn. 33(4), 685–704 (2000). http://www.sciencedirect.com/science/article/pii/S0031320399000801
Oustaloup, A.: La Commande CRONE: Commande Robuste d’Ordre Non Intier. Hermes, Paris (1991)
Pires, E.J.S., Machado, J.A.T., de Moura Oliveira, P.B.: Entropy diversity in multi-objective particle swarm optimization. Entropy 15(12), 5475–5491 (2013). http://www.mdpi.com/1099-4300/15/12/5475
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423, 623–656 (July, October 1948), http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
Solteiro Pires, E.J., de Moura Oliveira, P.B., Tenreiro Machado, J.A.: Multi-objective MaxiMin sorting scheme. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 165–175. Springer, Heidelberg (2005)
Pires, E.J.S., Machado, J.A.T., de Moura Oliveira, P.B.: Dynamical modelling of a genetic algorithm. Signal Process 86(10), 2760–2770 (2006)
Pires, E.J.S., Machado, J.A.T., de Moura Oliveira, P.B.: Diversity study of multi-objective genetic algorithm based on shannon entropy. In: 6th World Congress on Nature and Biologically Inspired Computing (NaBIC), Porto, Portugal (30 July - 1 August) (2014)
Wang, L., Chen, Y., Tang, Y., Sun, F.: The entropy metric in diversity of multiobjective evolutionary algorithms. In: 2011 International Conference on Soft Computing and Pattern Recognition (SoCPaR), pp. 217–221 (2011)
Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the cec 2009 special session and competition. Technical report CES-487, University of Essex and Nanyang Technological University (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Solteiro Pires, E.J., Tenreiro Machado, J.A., de Moura Oliveira, P.B. (2017). Multi-objective Dynamic Analysis Using Fractional Entropy. In: Madureira, A., Abraham, A., Gamboa, D., Novais, P. (eds) Intelligent Systems Design and Applications. ISDA 2016. Advances in Intelligent Systems and Computing, vol 557. Springer, Cham. https://doi.org/10.1007/978-3-319-53480-0_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-53480-0_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53479-4
Online ISBN: 978-3-319-53480-0
eBook Packages: EngineeringEngineering (R0)