Skip to main content

Blind Source Separation of Single Channel Mixture Using Tensorization and Tensor Diagonalization

  • Conference paper
  • First Online:
Book cover Latent Variable Analysis and Signal Separation (LVA/ICA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10169))

Abstract

This paper deals with estimation of structured signals such as damped sinusoids, exponentials, polynomials, and their products from single channel data. It is shown that building tensors from this kind of data results in tensors with hidden block structure which can be recovered through the tensor diagonalization. The tensor diagonalization means multiplying tensors by several matrices along its modes so that the outcome is approximately diagonal or block-diagonal of 3-rd order tensors. The proposed method can be applied to estimation of parameters of multiple damped sinusoids, and their products with polynomial.

The work of P. Tichavsky was supported by The Czech Science Foundation through Projects No. 14-13713S and 17-00902S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The NLS algorithm is available in the Tensorlab toolbox at www.tensorlab.net.

References

  1. Cichocki, A., Zdunek, R., Phan, A.-H., Amari, S.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, Chichester (2009)

    Book  Google Scholar 

  2. Cichocki, A., Mandic, D., Caiafa, C., Phan, A.-H., Zhou, G., Zhao, Q., Lathauwer, L.D.: Multiway component analysis: tensor decompositions for signal processing applications. IEEE Sig. Process. Mag. 32(2), 145–163 (2015)

    Article  Google Scholar 

  3. Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, Cambridge (2010)

    Google Scholar 

  4. Proakis, J., Manolakis, D.: Digital Signal Processing: Principles, Algorithms, Applications. Macmillan, London (1992)

    Google Scholar 

  5. Kumaresan, R., Tufts, D.: Estimating the parameters of exponentially damped sinusoids and pole-zero modelling in noise. IEEE Trans. Acoust. Speech Sig. Proces. 30(7), 837–840 (1982)

    Google Scholar 

  6. Hua, Y., Sarkar, T.: Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoid in noise. IEEE Trans. Acoust. Speech Sig. Process. 38(5), 814–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Papy, J.M., De Lathauwer, L., Van Huffel, S.: Exponential data fitting using multilinear algebra: the single-channel and the multichannel case. Numer. Linear Algebra Appl. 12(9), 809–826 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nion, D., Sidiropoulos, N.D.: Tensor algebra and multidimensional harmonic retrieval in signal processing for MIMO radar. IEEE Trans. Sig. Process. 58, 5693–5705 (2010)

    Article  MathSciNet  Google Scholar 

  9. Wen, F., So, H.C.: Robust multi-dimensional harmonic retrieval using iteratively reweighted HOSVD. IEEE Sig. Process. Lett. 22, 2464–2468 (2015)

    Article  Google Scholar 

  10. Sørensen, M., De Lathauwer, L.: Multidimensional harmonic retrieval via coupled canonical polyadic decomposition - Part 1: model and identifiability. IEEE Trans. Sig. Process. 65(2), 517–527 (2017)

    Article  MathSciNet  Google Scholar 

  11. De Lathauwer, L.: Blind separation of exponential polynomials and the decomposition of a tensor in rank-(\(L_r\),\(L_r\),1) terms. SIAM J. Matrix Anal. Appl. 32(4), 1451–1474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Lathauwer, L.: Block component analysis, a new concept for blind source separation. In: Proceedings of the 10th International Conference on LVA/ICA, Tel Aviv, 12–15 March, pp. 1–8 (2012)

    Google Scholar 

  13. Tichavský, P., Phan, A.-H., Cichocki, A.: Tensor diagonalization-a new tool for PARAFAC and block-term decomposition (2014). arXiv preprint arXiv:1402.1673

  14. Kouchaki, S., Sanei, S.: Tensor based singular spectrum analysis for nonstationary source separation. In: Proceedings of the 2013 IEEE International Workshop on Machine Learning for Signal Processing, Southampton, UK (2013)

    Google Scholar 

  15. Debals, O., Lathauwer, L.: Stochastic and deterministic tensorization for blind signal separation. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds.) LVA/ICA 2015. LNCS, vol. 9237, pp. 3–13. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22482-4_1

    Google Scholar 

  16. Boussé, M., Debals, O., De Lathauwer, L.: A tensor-based method for large-scale blind source separation using segmentation. IEEE Trans. Sig. Process. 65(2), 346–358 (2017)

    Article  MathSciNet  Google Scholar 

  17. Cichocki, A., Namgil, L., Oseledets, I., Phan, A.-H., Zhao, Q., Mandic, D.P.: Tensor networks for dimensionality reduction and large-scale optimization. Found. Trends\(\textregistered \) Mach. Learn. 9(4–5) (2017)

    Google Scholar 

  18. Sorber, L., Van Barel, M., De Lathauwer, L.: Structured data fusion. IEEE J. Sel. Top. Sign. Proces. 9(4), 586–600 (2015)

    Article  Google Scholar 

  19. Hayes, M.: Statistical Digital Signal Processing and Modeling. Wiley, Hoboken (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Tichavský .

Editor information

Editors and Affiliations

A Appendix: Low-Rank Representation of the Sequence \(x(t) = t^n\)

A Appendix: Low-Rank Representation of the Sequence \(x(t) = t^n\)

Lemma 5

(Three-way folding of \(x(t) = t\) ). An order-3 tensor of size \(I\times J\times K\), reshaped (folded) from the sequence \(1,2,\ldots , IJK\), where \(I,J,K>2\), has multilinear rank-(2, 2, 2) and rank-3, and can be represented as

$$\begin{aligned} \varvec{\mathscr {\MakeUppercase {Y}}}= \varvec{\mathscr {\MakeUppercase {G}}}\times _1 \mathbf{U}_1 \times _2 \mathbf{U}_2 \times _3 \mathbf{U}_3 \end{aligned}$$
(14)

where \(\varvec{\mathscr {\MakeUppercase {G}}}\) is a tensor of size \(2 \times 2 \times 2\)

$$\begin{aligned} \varvec{\mathscr {\MakeUppercase {G}}}(:,1,:)= & {} \left[ \begin{array}{cc} -2 &{} -1 \\ 1 &{} 0 \end{array} \right] , \qquad \varvec{\mathscr {\MakeUppercase {G}}}(:,2,:) = \left[ \begin{array}{cc} 1 &{} 0 \\ 0 &{} 1 \end{array} \right] , \end{aligned}$$

and the three factor matrices are given by

$$\begin{aligned} \mathbf{U}_1= & {} \left[ \begin{array}{cc} 0 &{} 1 \\ \vdots &{} \vdots \\ i &{} i+1\\ \vdots &{} \vdots \\ (I-1) &{} I \end{array} \right] , \;\; \mathbf{U}_2 = \left[ \begin{array}{cc} 0 &{} 1 \\ \vdots &{} \vdots \\ jI &{} jI+1\\ \vdots &{} \vdots \\ (J-1)I &{} (J-1)I+1 \end{array} \right] , \;\; \mathbf{U}_3 = \left[ \begin{array}{cc} 0 &{} 1 \\ \vdots &{} \vdots \\ kIJ &{} kIJ+1\\ \vdots &{} \vdots \\ (K-1)IJ &{} (K-1)IJ+1 \end{array} \right] . \end{aligned}$$

Lemma 6

(Toeplitzation of \(x(t) = t\) ). An order-3 Toeplitz tensor of size \(I\times J\times K\), tensorized from the sequence \(1,2,\ldots , L\), where \(L = I+J+K-2\), has multilinear rank-(2, 2, 2) and rank-3, and can be represented as

$$\begin{aligned} \varvec{\mathscr {\MakeUppercase {Y}}}= \varvec{\mathscr {\MakeUppercase {G}}}\times _1 \mathbf{U}_1 \times _2 \mathbf{U}_2 \times _3 \mathbf{U}_3 \end{aligned}$$
(15)

where \(\varvec{\mathscr {\MakeUppercase {G}}}\) is a tensor of size \(2 \times 2 \times 2\)

$$\begin{aligned} \varvec{\mathscr {\MakeUppercase {G}}}(:,:,1)= & {} \left[ \begin{array}{cc} I+4 &{} -(I+3) \\ -(I+3) &{} I+2 \end{array} \right] , \qquad \varvec{\mathscr {\MakeUppercase {G}}}(:,:,2) = \left[ \begin{array}{cc} -(I+3) &{} I+2 \\ I+2 &{} -(I+1) \end{array} \right] , \end{aligned}$$

and the three factor matrices are given by

$$\begin{aligned} \mathbf{U}_1= & {} \left[ \begin{array}{cc} 1 &{} 2 \\ \vdots &{} \vdots \\ i &{} i+1\\ \vdots &{} \vdots \\ I &{} I+1 \end{array} \right] , \;\; \mathbf{U}_2 = \left[ \begin{array}{cc} I &{} I+1 \\ \vdots &{} \vdots \\ j &{} j+1\\ \vdots &{} \vdots \\ I+J-1 &{} I+J \end{array} \right] , \;\; \mathbf{U}_3 = \left[ \begin{array}{cc} I+J-1 &{} I+J-2 \\ \vdots &{} \vdots \\ k &{} k-1\\ \vdots &{} \vdots \\ L &{} L-1 \end{array} \right] \, . \end{aligned}$$

Lemma 7

(Three-way folding of \(x(t) = t^n\) ). An order-3 tensor of size \(I\times J\times K\), reshaped (folded) from the sequence \(x(t) = t^n\), where \(n = 1, 2, \ldots \) and \(I,J,K>2\), has multilinear rank-(\(n+1,n+1,n+1\)).

Proof

By exploiting the closed-form expression of \(x(t) = t\) in Lemma 5, and the property of the Hadamard product stated in Lemma 4 or in (13), we can prove that the tensor reshaped from \(x(t) = t^n\) can be fully explained by three factor matrices which have \(n+1\) columns, and are defined as \(\mathbf{U}_1 = \mathbf{F}(I,n)\), \(\mathbf{U}_2 = \mathbf{F}(IJ,n)\) and \(\mathbf{U}_3 = \mathbf{F}(IJK,n)\), where

$$\begin{aligned} \mathbf{F}(I,n)= & {} \left[ \begin{array}{ccccc} 0 &{} \cdots &{} 0 &{} \cdots &{} 1 \\ \vdots &{} &{} \vdots \\ i^n &{} \cdots &{} i^k(i+1)^{n-k} &{} \cdots &{} (i+1)^n\\ \vdots &{} &{} \vdots &{} &{} \vdots \\ (I-1) &{} \cdots &{} (I-1)^k I^{n-k} &{} \cdots &{} I^n \end{array} \right] \, . \end{aligned}$$

   \(\square \)

Lemma 8

(Toeplitzation of \(x(t) = t^n\) ). An order-3 Toeplitz tensor of size \(I\times J\times K\) of the sequence \(x(t) = t^n\), has multilinear rank-(\(n+1,n+1,n+1\)).

Proof

Skipped for lack of space.

   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Phan, AH., Tichavský, P., Cichocki, A. (2017). Blind Source Separation of Single Channel Mixture Using Tensorization and Tensor Diagonalization. In: Tichavský, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2017. Lecture Notes in Computer Science(), vol 10169. Springer, Cham. https://doi.org/10.1007/978-3-319-53547-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53547-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53546-3

  • Online ISBN: 978-3-319-53547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics