Skip to main content

Derivatives and Finite Automata of Expressions in Star Normal Form

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10168))

Abstract

This paper studies derivatives and automata for expressions in star normal form as defined by Brüggemann-Klein. For an expression in star normal form, the paper shows that the derivatives are either \(\emptyset \) or unique, while in general Berry and Sethi’s result shows the derivatives are either \(\emptyset \) or similar. It is known that the partial derivative automaton and the follow automaton are two small automata, each of which is a quotient of the position automaton. For the relation between the partial derivative and follow automata, however, Ilie and Yu stated that a rigorous analysis is necessary but difficult. The paper tackles the issue, and presents several results. Our work shows that there are different conditions under which the relation of the two automata can be different.

Work supported by the National Natural Science Foundation of China under Grant No. 61472405.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This quotient result, however, is not given in [6]. In [6] the main theorem (Theorem 4, p.11) states for a “normalized” regular expression, the size of the partial derivative automaton is smaller than the size of the follow automaton.

  2. 2.

    \(RF=\{EF | E\in R\}\) for a set R of regular expressions and a regular expression F.

References

  1. Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions. Theoret. Comput. Sci. 155, 291–319 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret. Comput. Sci. 48, 117–126 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoret. Comput. Sci. 120, 197–213 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Comput. 142(2), 182–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM (JACM) 11(4), 481–494 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  6. Champarnaud, J.-M., Ouardi, F., Ziadi, D.: Normalized expressions and finite automata. Int. J. Algebra Comput. 17(01), 141–154 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Champarnaud, J.-M., Ziadi, D.: Canonical derivatives, partial derivatives and finite automaton constructions. Theoret. Comput. Sci. 289(1), 137–163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Champarnaud, J.-M., Nicart, F., Ziadi, D.: Computing the follow automaton of an expression. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 90–101. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30500-2_9

    Chapter  Google Scholar 

  9. Chia-Hsiang, C., Paige, R.: From regular expressions to DFA’s using compressed NFA’s. Theoret. Comput. Sci. 178(1), 1–36 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16(5), 1 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186, 146–162 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata. IEEE Trans. Electron. Comput. 1(EC–9), 39–47 (1960)

    Article  MATH  Google Scholar 

  13. Mirkin, B.G.: An algorithm for constructing a base in a language of regular expressions. Eng. Cybern. 5, 110–116 (1966)

    Google Scholar 

  14. Ponty, J.-L., Ziadi, D., Champarnaud, J.-M.: A new quadratic algorithm to convert a regular expression into an automaton. In: Raymond, D., Wood, D., Yu, S. (eds.) WIA 1996. LNCS, vol. 1260, pp. 109–119. Springer, Heidelberg (1997). doi:10.1007/3-540-63174-7_9

    Chapter  Google Scholar 

  15. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity. Theoret. Comput. Sci. 332(1–3), 141–177 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 41–110. Springer, Berlin (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiming Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, H., Lu, P. (2017). Derivatives and Finite Automata of Expressions in Star Normal Form. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2017. Lecture Notes in Computer Science(), vol 10168. Springer, Cham. https://doi.org/10.1007/978-3-319-53733-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53733-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53732-0

  • Online ISBN: 978-3-319-53733-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics