Abstract
The concept of \(\mathbb {N}\)-memory automaton over the alphabet \(\mathbb {N}\) is studied. We show a result on robustness of this model (by a connection to MSO-logic), give a discussion on its expressive power and closure properties, and show among other decidability results the solvability of the non-emptiness problem. We conclude with perspectives for applications and some open questions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use the notation \(q[\textit{condition}]\) to indicate q if the condition is satisfied and \(\diamond \) otherwise. We set \( \gamma (n,h)\) to be \(\#\) if \(h=0\), 1 if \(0<h\le n\), and \(\bot \) if \(h>n\).
References
Bès, A.: An application of the Feferman-Vaught theorem to automata and logics for words over an infinite alphabet. Logical Methods Comput. Sci. 4(1) (2008)
Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data words. ACM Trans. Comput. Logic 12(4), 27 (2011)
Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Logical Methods Comput. Sci. 10(3) (2014)
Brütsch, B., Thomas, W.: Playing games in the Baire space. In: Brihaye, T., Delahaye, B., Jezequel, L., Markey, N., Srba, J. (eds.) Proceedings of Cassting Workshop on Games for the Synthesis of Complex Systems, EPTCS, vol. 220, pp. 13–25 (2016)
Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Nagel, E., Suppes, P., Tarski, A. (eds.) Proceedings of the 1960 International Congress on Logic, Methodology and Philosophy of Science, Studies in Logic and the Foundations of Mathematics, vol. 44, pp. 1–11. Elsevier, Amsterdam (1966)
Carapelle, C., Feng, S., Kartzow, A., Lohrey, M.: Satisfiability of ECTL* with tree constraints. In: Beklemishev, L.D., Musatov, D.V. (eds.) CSR 2015. LNCS, vol. 9139, pp. 94–108. Springer, Heidelberg (2015). doi:10.1007/978-3-319-20297-6_7
Czyba, C., Spinrath, C., Thomas, W.: Finite automata over infinite alphabets: two models with transitions for local change. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 203–214. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21500-6_16
Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14(2), 389–418 (1967)
Kaminski, M., Francez, N.: Finite-memory automata. Theoret. Comput. Sci. 134(2), 329–363 (1994)
Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006). doi:10.1007/11874683_3
Spelten, A., Thomas, W., Winter, S.: Trees over infinite structures and path logics with synchronization. In: Yu, F., Wang, C. (eds.) Proceedings of INFINITY 2011, EPTCS, vol. 73, pp. 20–34 (2011)
Tan, T.: An automata model for trees with ordered data values. In: Proceedings of LICS 2012, pp. 586–595. IEEE Computer Society (2012)
Tan, T.: Extending two-variable logic on data trees with order on data values and its automata. ACM Trans. Comput. Log. 15(1), 8 (2014)
Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 389–455. Springer, Berlin (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Brütsch, B., Landwehr, P., Thomas, W. (2017). \(\mathbb {N}\)-Memory Automata over the Alphabet \(\mathbb {N}\) . In: Drewes, F., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2017. Lecture Notes in Computer Science(), vol 10168. Springer, Cham. https://doi.org/10.1007/978-3-319-53733-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-53733-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53732-0
Online ISBN: 978-3-319-53733-7
eBook Packages: Computer ScienceComputer Science (R0)