Skip to main content

Farfield Noise Prediction Using Large-Scale Lattice-Boltzmann Simulations

  • Conference paper
  • First Online:
High-Performance Scientific Computing (JHPCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10164))

  • 1033 Accesses

Abstract

In order to predict farfield noise created by the flow over complex geometries, high-fidelity flow simulations based on the Lattice-Boltzmann solver PowerFLOW are used in conjunction with the acoustic analogy solver PowerACOUSTICS. Since the flow needs to be spatially and temporally well resolved, the simulations are usually carried on a large number of computational cores for adequate turnaround times. This paper provides the background on the two-step methodology and gives an overview on aero-acoustics computations in aerospace, ranging from an isolated airframe component to the entire aircraft system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, H.: Volumetric formulation of the lattice-boltzmann method for fluid dynamics: basic concept. Phys. Rev. E 58(3), 3955–3963 (1998)

    Article  Google Scholar 

  2. Chen, H., Texeira, C., Molvig, K.: Realization of fluid boundary condition via discrete boltzmann dynamics. Int. J. Mod. Phys. C 09, 1281–1292 (1998)

    Article  Google Scholar 

  3. Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., Yakhot, V.: Extended boltzmann kinetic equation for turbulent flows. Science 301, 633–636 (2003)

    Article  Google Scholar 

  4. Chen, H., Chen, S., Matthaeus, W.: Recovery of the navier-stokes equations using a lattice-gas boltzmann method. Phys. Rev. A 45(8), 5339–5342 (1992)

    Article  Google Scholar 

  5. Li, Y., Shock, R., Zhang, R., Chen, H.: Numerical study of flow past an impulsively started cylinder by lattice boltzmann method. J. Fluid Mech. 519, 273–300 (2004)

    Article  MATH  Google Scholar 

  6. Fares, E., Jelic, S., Kuthada, T., Schroeck, D.: Lattice boltzmann thermal flow simulation and measurements of a modified SAE model with heated plug. In: Proceedings of FEDSM 2006-98467 (2006)

    Google Scholar 

  7. Fares, E.: Unsteady flow simulation of the ahmed reference body using a lattice boltzmann approach. J. Comput. Fluids 35, 940–950 (2006)

    Article  MATH  Google Scholar 

  8. Qian, Y., d’Humieres, D., Lallemand, P.: Lattice BGK models for the navier-stokes equation. Europhys. Lett. 17, 479–484 (1992)

    Article  MATH  Google Scholar 

  9. Williams, J.E.F., Hawkings, D.L.: Sound generated by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. 264(1151), 321–342 (1969)

    Article  MATH  Google Scholar 

  10. Farassat, F., Succi, G.P.: The prediction of helicopter discrete frequency noise. Vertica 7(4), 309–320 (1983)

    Google Scholar 

  11. Airbus SAS: LAGOON Simplified (2-Wheel) Nose Landing Gear Configuration #1 -Experimental Database. TR-R12, Toulouse, France, April 2011

    Google Scholar 

  12. Casalino, D., Ribeiro, A., Fares, E., Noelting, S.: Lattice-boltzmann aeroacoustic analysis of the LAGOON landing-gear configuration. AIAA J. 52(6), 1232–1248 (2014)

    Article  Google Scholar 

  13. Khorrami, M., Fares, E.: Simulation-based airframe noise prediction of a full-scale, full aircraft. In: Aeroacoustics Conference, Lyon, France, AIAA 2016–2706 (2016)

    Google Scholar 

  14. Fares, E., Duda, B., Khorrami, M.: Airframe noise prediction of a full aircraft in model and full scale using a lattice boltzmann. In: Aeroacoustics Conference, Lyon, France, AIAA 2016–2707 (2016)

    Google Scholar 

  15. Khorrami, M., Duda, B., Hazir, A., Fares, E.: Computational evaluation of airframe noise reduction concepts at full scale. In: Aeroacoustics Conference, Lyon, France, AIAA 2016–2711 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Duda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Duda, B., Fares, E. (2017). Farfield Noise Prediction Using Large-Scale Lattice-Boltzmann Simulations. In: Di Napoli, E., Hermanns, MA., Iliev, H., Lintermann, A., Peyser, A. (eds) High-Performance Scientific Computing. JHPCS 2016. Lecture Notes in Computer Science(), vol 10164. Springer, Cham. https://doi.org/10.1007/978-3-319-53862-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53862-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53861-7

  • Online ISBN: 978-3-319-53862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics