Skip to main content

Relations Between Digraphs Structure and Analogue Realisations with an Example of Electrical Circuit

  • Conference paper
  • First Online:
Automation 2017 (ICA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 550))

Included in the following conference series:

Abstract

This paper present a method for computation of a minimal realisation of a given proper transfer function of continuous-time fractional linear systems in the electrical circuit. For the proposed method, a digraph-based algorithm was constructed. We have also shown how after using the constant phase element method we can realise such a system. The proposed method was discussed and illustrated with some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das, S.: Functional Fractional Calculus. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20545-3

    Book  MATH  Google Scholar 

  2. Valsa, J., Dvorak, P., Friedl, M.: Network model of the CPE. Radioengineering 20(3), 619–626 (2011)

    Google Scholar 

  3. Machado, J., Lopes, A.M.: Fractional state space analysis of temperature time series. Fractional Calc. Appl. Anal. 18(6), 1518–1536 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Machado, J., Mata, M.E., Lopes, A.M.: Fractional state space analysis of economic systems. Entropy 17(8), 5402–5421 (2015)

    Article  Google Scholar 

  5. Machado, J.A.T.: Implementing discrete-time fractional-order controllers. JACIII 5(5), 279–285 (2001). doi:10.20965/jaciii.2001.p0279

    Article  Google Scholar 

  6. Markowski, K.A.: Positive stable realisation of fractional electrical circuits consisting of n subsystem. J. Phys. Conf. Ser. 659(1), 012041 (2015). doi:10.1088/1742-6596/659/1/012041

  7. Markowski, K.A.: Digraphs structures corresponding to realisation of multi-order fractional electrical circuits. In: 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1–6 (2016). doi:10.1109/AQTR.2016.7501368

  8. Markowski, K.A.: Digraphs structures corresponding to the analogue realisation of fractional continuous-time system. J. Phys. Conf. Ser. (In press)

    Google Scholar 

  9. Martynyuk, V., Ortigueira, M.: Fractional model of an electrochemical capacitor. Signal Process. 107, 355–360 (2015)

    Article  Google Scholar 

  10. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differenctial Equations. Willey, New York (1993)

    MATH  Google Scholar 

  11. Nishimoto, K.: Fractional Calculus. Decartess Press, Koriama (1984)

    MATH  Google Scholar 

  12. Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, Netherlands (2011). doi:10.1007/978-94-007-0747-4

    Book  MATH  Google Scholar 

  13. Ortigueira, M.D., Rivero, M., Trujillo, J.J.: Steady-state response of constant coefficient discrete-time differential systems. J. King Saud Univ. 28(1), 29–32 (2015)

    Article  Google Scholar 

  14. Petras, I., Sierociuk, D., Podlubny, I.: Identification of parameters of a half-order system. IEEE Trans. Sign. Process. 60(10), 5561–5566 (2012)

    Article  MathSciNet  Google Scholar 

  15. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  16. Podlubny, I., Skovranek, T., Datsko, B.: Recent advances in numerical methods for partial fractional differential equations. In: 2014 15th International Carpathian Control Conference (ICCC), pp. 454–457. IEEE (2014)

    Google Scholar 

  17. Tepljakov, A., Petlenkov, E., Belikov, J.: FOMCON: A MATLAB toolbox for fractional-order system identification and control. Int. J. Microelectron. Comput. Sci. 2(2), 51–62 (2011)

    Google Scholar 

  18. Tepljakov, A., Petlenkov, E., Belikov, J.: FOMCON: Fractional order modeling and control toolbox for MATLAB. In: The 18th International Conference Mixed Design of Integrated Circuits and Systems, Gliwice, Poland, pp. 684–689 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Andrzej Markowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Markowski, K.A. (2017). Relations Between Digraphs Structure and Analogue Realisations with an Example of Electrical Circuit. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2017. ICA 2017. Advances in Intelligent Systems and Computing, vol 550. Springer, Cham. https://doi.org/10.1007/978-3-319-54042-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54042-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54041-2

  • Online ISBN: 978-3-319-54042-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics