Skip to main content

Transfer Learning for Colonic Polyp Classification Using Off-the-Shelf CNN Features

  • Conference paper
  • First Online:
Computer-Assisted and Robotic Endoscopy (CARE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10170))

Included in the following conference series:

  • 1349 Accesses

Abstract

Recently, a great development in image recognition has been achieved, especially by the availability of large and annotated databases and the application of Deep Learning on these data. Convolutional Neural Networks (CNN’s) can be used to enable the extraction of highly representative features among the network layers filtering, selecting and using these features in the last fully connected layers for pattern classification. However, CNN training for automatic medical image classification still provides a challenge due to the lack of large and publicly available annotated databases. In this work, we evaluate and analyze the use of CNN’s as a general feature descriptor doing transfer learning to generate “off-the-shelf” CNN’s features for the colonic polyp classification task. The good results obtained by off-the-shelf CNN’s features in many different databases suggest that features learned from CNN with natural images can be highly relevant for colonic polyp classification.

E. Ribeiro—This research was partially supported by CNPq-Brazil for Eduardo Ribeiro under grant No. 00736/2014-0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ameling, S., Wirth, S., Paulus, D., Lacey, G., Vilarino, F.: Texture-based polyp detection in colonoscopy. In: Meinzer, H.-P., Deserno, T.M., Handels, H., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2009. Informatik aktuell, pp. 346–350. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Bar, Y., Diamant, I., Wolf, L., Lieberman, S., Konen, E., Greenspan, H.: Chest pathology detection using deep learning with non-medical training. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 294–297, April 2015

    Google Scholar 

  3. Bernal, J., Schez, J., Vilario, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recognit. 45(9), 3166–3182 (2012). Best Papers of Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2011)

    Article  Google Scholar 

  4. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Conference, BMVC 2014, Nottingham, 1–5 September 2014

    Google Scholar 

  5. Dong, Y., Tao, D., Li, X., Ma, J., Pu, J.: Texture classification and retrieval using shearlets and linear regression. IEEE Trans. Cybern. 45(3), 358–369 (2015)

    Article  Google Scholar 

  6. Ribeiro E., Uhl, A., Häfner, M.: Colonic polyp classification with convolutional neural networks. In: 2016 29th International Symposium on Computer-Based Medical Systems (CBMS), June 2016

    Google Scholar 

  7. Ganz, M., Yang, X., Slabaugh, G.: Automatic segmentation of polyps in colonoscopic narrow-band imaging data. IEEE Trans. Biomed. Eng. 59(8), 2144–2151 (2012)

    Article  Google Scholar 

  8. Ginneken, B., Setio, A., Jacobs, C., Ciompi, F.: Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: 12th IEEE International Symposium on Biomedical Imaging, ISBI 2015, Brooklyn, 16–19 April 2015, pp. 286–289 (2015)

    Google Scholar 

  9. Häfner, M., Kwitt, R., Uhl, A., Gangl, A., Wrba, F., Vécsei, A.: Feature extraction from multi-directional multi-resolution image transformations for the classification of zoom-endoscopy images. Pattern Anal. Appl. 12(4), 407–413 (2009)

    Article  MathSciNet  Google Scholar 

  10. Häfner, M., Liedlgruber, M., Maimone, S., Uhl, A., Vécsei, A., Wrba, F.: Evaluation of cross-validation protocols for the classification of endoscopic images of colonic polyps. In: 2012 25th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6, June 2012

    Google Scholar 

  11. Häfner, M., Liedlgruber, M., Uhl, A., Vécsei, A., Wrba, F.: Color treatment in endoscopic image classification using multi-scale local color vector patterns. Med. Image Anal. 16(1), 75–86 (2012)

    Article  Google Scholar 

  12. Häfner, M., Liedlgruber, M., Uhl, A., Vécsei, A., Wrba, F.: Delaunay triangulation-based pit density estimation for the classification of polyps in high-magnification chromo-colonoscopy. Comput. Methods Programs Biomed. 107(3), 565–581 (2012)

    Article  Google Scholar 

  13. Häfner, M., Tamaki, T., Tanaka, S., Uhl, A., Wimmer, G., Yoshida, S.: Local fractal dimension based approaches for colonic polyp classification. Med. Image Anal. 26(1), 92–107 (2015)

    Article  Google Scholar 

  14. Häfner, M., Uhl, A., Wimmer, G.: A novel shape feature descriptor for the classification of polyps in HD colonoscopy. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Tu, Z. (eds.) MCV 2013. LNCS, vol. 8331, pp. 205–213. Springer, Heidelberg (2014). doi:10.1007/978-3-319-05530-5_20

    Chapter  Google Scholar 

  15. Shin, H., Roth, H., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. CoRR, abs/1602.03409 (2016)

    Google Scholar 

  16. Alex K., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  17. Kato, S., Fu, K.I., Sano, Y., Fujii, T., Saito, Y., Matsuda, T., Koba, I., Yoshida, S., Fujimori, T.: Magnifying colonoscopy as a non-biopsy technique for differential diagnosis of non-neoplastic and neoplastic lesions. World J. Gastroenterol. 12(9), 1416–1420 (2006)

    Article  Google Scholar 

  18. Kudo, S., Hirota, S., Nakajima, T.: Colorectal tumours and pit pattern. J. Clin. Pathol. 10, 880–885 (1994)

    Article  Google Scholar 

  19. McNemar, Q.: Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12(2), 153–157 (1947)

    Article  Google Scholar 

  20. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, 23–28 June 2014, pp. 1717–1724 (2014)

    Google Scholar 

  21. Sun, Y.P., Sargent, D., Spofford, I., Vosburgh, K.G., A-Rahim, Y.: A colon video analysis framework for polyp detection. IEEE Trans. Biomed. Eng. 59(5), 1408–1418 (2012)

    Article  Google Scholar 

  22. Park, S.Y., Sargent, D.: Colonoscopic polyp detection using convolutional neural networks. In: Proceedings of SPIE, vol. 9785, p. 978528 (2016)

    Google Scholar 

  23. Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2014, Columbus, 23–28 June 2014, pp. 512–519 (2014)

    Google Scholar 

  24. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. CoRR, abs/1312.6229 (2013)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)

    Google Scholar 

  26. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  27. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automatic polyp detection in colonoscopy videos using an ensemble of convolutional neural networks. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 79–83, April 2015

    Google Scholar 

  28. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630–644 (2016)

    Article  Google Scholar 

  29. Vedaldi, A., Lenc, K.: Matconvnet - convolutional neural networks for MATLAB. CoRR, abs/1412.4564 (2014)

    Google Scholar 

  30. Yi, W., Tavanapong, W., Wong, J., Oh, J., de Groen, P.C.: Part-based multiderivative edge cross-sectional profiles for polyp detection in colonoscopy. IEEE J. Biomed. Health Inform. 18(4), 1379–1389 (2014)

    Article  Google Scholar 

  31. Wang, Y., Tavanapong, W., Wong, J., Oh, J.H., de Groen, P.C.: Polyp-alert: near real-time feedback during colonoscopy. Comput. Methods Programs Biomed. 120(3), 164–179 (2015)

    Article  Google Scholar 

  32. Wimmer, G., Tamaki, T., Tischendorf, J.J.W., Häfner, M., Yoshida, S., Tanaka, S., Uhl, A.: Directional wavelet based features for colonic polyp classification. Med. Image Anal. 31, 16–36 (2016)

    Article  Google Scholar 

  33. Zhu, R., Zhang, R., Xue, D.: Lesion detection of endoscopy images based on convolutional neural network features. In: 2015 8th International Congress on Image and Signal Processing (CISP), pp. 372–376, October 2015

    Google Scholar 

  34. Zou, Y., Li, L., Wang, Y., Yu, J., Li, Y., Deng, W.J.: Classifying digestive organs in wireless capsule endoscopy images based on deep convolutional neural network. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 1274–1278, July 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ribeiro, E., Uhl, A., Wimmer, G., Häfner, M. (2017). Transfer Learning for Colonic Polyp Classification Using Off-the-Shelf CNN Features. In: Peters, T., et al. Computer-Assisted and Robotic Endoscopy. CARE 2016. Lecture Notes in Computer Science(), vol 10170. Springer, Cham. https://doi.org/10.1007/978-3-319-54057-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54057-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54056-6

  • Online ISBN: 978-3-319-54057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics