Abstract
Maintaining an archive of all non-dominated points is a standard task in multi-objective optimization. Sometimes it is sufficient to store all evaluated points and to obtain the non-dominated subset in a post-processing step. Alternatively the non-dominated set can be updated on the fly. While keeping track of many non-dominated points efficiently is easy for two objectives, we propose an efficient algorithm based on a binary space partitioning (BSP) tree for the general case of three or more objectives. Our analysis and our empirical results demonstrate the superiority of the method over the brute-force baseline method, as well as graceful scaling to large numbers of objectives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
This is usually sufficient for the needs of evolutionary optimization. In data base query problems larger sets must be processed. Hence in some applications memory consumption is still a concern.
- 4.
For \(a>0\) the values \(a=0.1\), \(a=0.2\), \(a=0.5\), and \(a=1\) were used with \(m=2\), \(m=3\), \(m=5\), and \(m=10\) objectives, respectively.
- 5.
References
De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry. Springer, Heidelberg (2000)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Congress on Evolutionary Computation (CEC 2002), pp. 825–830. IEEE (2002)
Fieldsend, J.E., Everson, R.M., Singh, S.: Using unconstrained elite archives for multi-objective optimization. IEEE Trans. Evol. Comput. 7(3), 305–323 (2003)
Fortin, F.A., Grenier, S., Parizeau, M.: Generalizing the improved run-time complexity algorithm for non-dominated sorting. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (2013)
Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)
Igel, C., Heidrich-Meisner, V., Glasmachers, T.: Shark. J. Mach. Learn. Res. 9, 993–996 (2008)
Jensen, M.T.: Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms. IEEE Trans. Evol. Comput. 7(5), 503–515 (2003)
Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: Proceedings of the 28th International Conference on Very Large Data Bases, VLDB Endowment, pp. 275–286 (2002)
Krause, O., Glasmachers, T., Hansen, N., Igel, C.: Unbounded population MO-CMA-ES for the bi-objective BBOB test suite. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (2016)
Kung, H.-T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM (JACM) 22(4), 469–476 (1975)
López-Ibáñez, M., Knowles, J., Laumanns, M.: On sequential online archiving of objective vectors. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 46–60. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19893-9_4
Lukasiewycz, M., Glaß, M., Haubelt, C., Teich, J.: Symbolic archive representation for a fast nondominance test. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 111–125. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70928-2_12
Mostaghim, S., Teich, J., Tyagi, A.: Comparison of data structures for storing pareto-sets in MOEAs. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC), vol. 1, pp. 843–848. IEEE (2002)
Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 467–478. ACM (2003)
Robson, J.M.: The height of binary search trees. Aust. Comput. J. 11, 151–153 (1979)
Schütze, O.: A new data structure for the nondominance problem in multi-objective optimization. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 509–518. Springer, Heidelberg (2003). doi:10.1007/3-540-36970-8_36
Voß, T., Hansen, N., Igel, C.: Improved step size adaptation for the MO-CMA-ES. In: 12th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 487–494. ACM (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Glasmachers, T. (2017). A Fast Incremental BSP Tree Archive for Non-dominated Points. In: Trautmann, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer Science(), vol 10173. Springer, Cham. https://doi.org/10.1007/978-3-319-54157-0_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-54157-0_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54156-3
Online ISBN: 978-3-319-54157-0
eBook Packages: Computer ScienceComputer Science (R0)