Skip to main content

Towards Standardized and Seamless Integration of Expert Knowledge into Multi-objective Evolutionary Optimization Algorithms

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10173))

Included in the following conference series:

  • 2281 Accesses

Abstract

Evolutionary algorithms allow for solving a wide range of multi-objective optimization problems. Nevertheless for complex practical problems, including domain knowledge is imperative to achieve good results. In many domains, single-objective expert knowledge is available, but its integration into modern multi-objective evolutionary algorithms (MOEAs) is often not trivial and infeasible for practitioners. In addition to the need of modifying algorithm architectures, the challenge of combining single-objective knowledge to multi-objective rules arises. This contribution takes a step towards a multi-objective optimization framework with defined interfaces for expert knowledge integration. Therefore, multi-objective mutation and local search operators are integrated into the two MOEAs MOEA/D and R-NSGAII. Results from experiments on exemplary machine scheduling problems prove the potential of such a concept and motivate further research in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note, however, that we focus on the more general context of applicability in MOEAs. Thus, the proposed methodology is not restricted to specific applications but strive for identifying additional integration points of expertise.

  2. 2.

    This configuration was applied without fine tuning to demonstrate the methodology. Future rigorous investigation may consider systematically generated configurations.

References

  1. Bagchi, T.P.: Multiobjective Scheduling by Genetic Algorithms. Springer, New York (1999)

    Book  MATH  Google Scholar 

  2. Burke, E.K., Gendreau, M., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. JORS 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Deb, K., Sundar, J., Udaya Bhaskara Rao, N., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithms. Int. J. Comput. Intell. Res. 2(3), 273–286 (2006)

    Article  MathSciNet  Google Scholar 

  5. Grimme, C., Kemmerling, M., Lepping, J.: On the integration of theoretical single-objective scheduling results for multi-objective problems. In: Tantar, E., Tantar, A.A., Bouvry, P., Del Moral, P., Legrand, P., Coello Coello, C., Schuetze, O. (eds.) EVOLVE- A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation, Studies in Computational Intelligence, vol. 447, pp. 333–363. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Grimme, C., Lepping, J., Schwiegelshohn, U.: Multi-criteria scheduling: an agent-based approach for expert knowledge integration. J. Sched. 16(4), 369–383 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hoogeveen, H.: Multicriteria scheduling. Eur. J. Oper. Res. 167(3), 592–623 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Use of heuristic local search for single-objective optimization in multiobjective memetic algorithms. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 743–752. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87700-4_74

    Chapter  Google Scholar 

  9. Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Use of biased neighborhood structures in multiobjective memetic algorithms. Soft Comput. 13(8), 795–810 (2009)

    Article  MATH  Google Scholar 

  10. Konstantinidis, A., Yang, K.: Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D. Appl. Soft Comput. 11(6), 4117–4134 (2011)

    Article  Google Scholar 

  11. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Operations Research and Management Science, vol. 12. Springer, New York (1998)

    MATH  Google Scholar 

  12. Nagar, A., Haddock, J., Heragu, S.: Multiple and bicriteria scheduling: a literature survey. Eur. J. Oper. Res. 81(1), 88–104 (1995)

    Article  MATH  Google Scholar 

  13. Nebro, A.J., Durillo, J.J.: jMetal 4.5 user manual (21 Jan 2014)

    Google Scholar 

  14. Peng, W., Zhang, Q.: Network topology planning using MOEA/D with objective-guided operators. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7492, pp. 62–71. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32964-7_7

    Chapter  Google Scholar 

  15. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 4th edn. Springer, New York (2012)

    Book  MATH  Google Scholar 

  16. Silva, J.D.L., Burke, E.K., Petrovic, S.: An introduction to multiobjective metaheuristics for scheduling and timetabling. In: Gandibleux, X., Sevaux, M., Soerensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation - Part I, Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 91–129. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Smith, W.E.: Various optimizers for single-stage production. Nav. Res. Logistics Q. 3(1), 59–66 (1956)

    Article  MathSciNet  Google Scholar 

  18. Wang, J., Cai, Y.: Multiobjective evolutionary algorithm for frequency assignment problem in satellite communications. Soft Comput. 19(5), 1229–1253 (2015)

    Article  Google Scholar 

  19. Wassenhove, L.N.V., Gelders, F.: Solving a bicriterion scheduling problem. Eur. J. Oper. Res. 4(1), 42–48 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  MathSciNet  Google Scholar 

  21. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Grimme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lang, M.A.K., Grimme, C. (2017). Towards Standardized and Seamless Integration of Expert Knowledge into Multi-objective Evolutionary Optimization Algorithms. In: Trautmann, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer Science(), vol 10173. Springer, Cham. https://doi.org/10.1007/978-3-319-54157-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54157-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54156-3

  • Online ISBN: 978-3-319-54157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics