Skip to main content

A Fitness Landscape Analysis of Pareto Local Search on Bi-objective Permutation Flowshop Scheduling Problems

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10173))

Included in the following conference series:

Abstract

We study the difficulty of solving different bi-objective formulations of the permutation flowshop scheduling problem by adopting a fitness landscape analysis perspective. Our main goal is to shed the light on how different problem features can impact the performance of Pareto local search algorithms. Specifically, we conduct an empirical analysis addressing the challenging question of quantifying the individual effect and the joint impact of different problem features on the success rate of the considered approaches. Our findings support that multi-objective fitness landscapes enable to devise sound general-purpose features for assessing the expected difficulty in solving permutation flowshop scheduling problems, hence pushing a step towards a better understanding of the challenges that multi-objective randomized search heuristics have to face.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguirre, H., Tanaka, K.: Working principles, behavior, and performance of MOEAs on MNK-landscapes. Eur. J. Oper. Res. 181(3), 1670–1690 (2007)

    Article  MATH  Google Scholar 

  2. Basseur, M., Liefooghe, A.: Metaheuristics for biobjective flow shop scheduling. In: Metaheuristics for Production Scheduling, Chap. 9, pp. 225–252. Wiley (2013)

    Google Scholar 

  3. Basseur, M., Seynhaeve, F., Talbi, E.G.: Design of multi-objective evolutionary algorithms: application to the flow shop scheduling problem. In: CEC 2002, NJ, USA, pp. 1151–1156 (2002)

    Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Daolio, F., Liefooghe, A., Verel, S., Aguirre, H., Tanaka, K.: Problem features vs. algorithm performance on rugged multi-objective combinatorial fitness landscapes. Evol. Comput. (to appear)

    Google Scholar 

  6. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  8. Geiger, M.: On operators and search space topology in multi-objective flow shop scheduling. Eur. J. Oper. Res. 181(1), 195–206 (2007)

    Article  MATH  Google Scholar 

  9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  10. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  11. Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.-G.: Combinatorial optimization of stochastic multi-objective problems: an application to the flow-shop scheduling problem. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 457–471. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS J. Comput. 20(3), 451–471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective combinatorial optimization problems. Ann. Oper. Res. 156(1), 83–97 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Richter, H., Engelbrecht, A. (eds.): Recent Advances in the Theory and Application of Fitness Landscapes. Springer, Heidelberg (2014)

    Google Scholar 

  15. Taillard, E.D.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993)

    Article  MATH  Google Scholar 

  16. T’Kindt, V., Billaut, J.C.: Multicriteria Scheduling: Theory, Models and Algorithms. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  17. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives. Eur. J. Oper. Res. 227(2), 331–342 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Liefooghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liefooghe, A., Derbel, B., Verel, S., Aguirre, H., Tanaka, K. (2017). A Fitness Landscape Analysis of Pareto Local Search on Bi-objective Permutation Flowshop Scheduling Problems. In: Trautmann, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer Science(), vol 10173. Springer, Cham. https://doi.org/10.1007/978-3-319-54157-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54157-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54156-3

  • Online ISBN: 978-3-319-54157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics