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Abstract. We study the difficulty of solving different bi-objective for-
mulations of the permutation flowshop scheduling problem by adopting a
fitness landscape analysis perspective. Our main goal is to shed the light
on how different problem features can impact the performance of Pareto
local search algorithms. Specifically, we conduct an empirical analysis ad-
dressing the challenging question of quantifying the individual effect and
the joint impact of different problem features on the success rate of the
considered approaches. Our findings support that multi-objective fitness
landscapes enable to devise sound general-purpose features for assess-
ing the expected difficulty in solving permutation flowshop scheduling
problems, hence pushing a step towards a better understanding of the
challenges that multi-objective randomized search heuristics have to face.

1 Introduction

The multi-objective optimization community has spent a lot of efforts in the
design of general-purpose techniques allowing to tackle hard optimization prob-
lems. Despite the number of available algorithms, their skillful design and their
flexibility when applied to a large spectrum of problems, a key ingredient to
make them efficient and effective lies in the choice of their components in order
to be specifically adapted to the multi-objective optimization problem (MOP)
being tackled. This might even depend on the intrinsic properties of the prob-
lem instance being considered. In this respect, there is evidence that new tools
dedicated to the understanding of the behavior of existing algorithms in light of
the properties of the MOP(s) under study are needed. We in fact argue that it is
timely to set up new methodological tools allowing to systematically investigate
the properties of multi-objective heuristics and to accordingly study and relate
their performance and their effectiveness to a given MOP. Such tools exist in the
single-objective optimization literature, where a number of paradigms from the
so-called fitness landscape analysis [14] have proved to be extremely helpful in
attaining such a goal. Motivated by their success and their accuracy, there was



2 A. Liefooghe, B. Derbel, S. Verel, H. Aguirre, K. Tanaka

recently several studies leveraging the single-objective case and pushing fitness
landscape analysis a step toward the development of new statistical methodolo-
gies and the identification of general-purpose characteristics and features that
fit the multi-objective nature of a given optimization problem; see e.g. [1, 5, 17].
However, still a relatively huge gap remains in bridging fitness landscape analysis
with the design of multi-objective randomized search heuristics.

In this paper, we continue the efforts from the community in this direc-
tion by conducting a comprehensive fitness landscape analysis with respect to
the co-called permutation flowshop scheduling problem (PFSP). Our interest
in this problem class stems from the fact that scheduling problems in general,
and the PFSP in particular, are ubiquitous to countless real-world applications
and constitute one of the most important and challenging problem class from
combinatorial optimization [10,16]. Nonetheless, in the multi-objective setting
and from a fitness landscape perspective, this problem class was only studied
to a small extent. Given that a number of different objectives (e.g., makespan,
tardiness) can be considered, one can naturally consider several multi-objective
formulations, which makes the PFSP particularly appealing and challenging to
investigate. In particular, we already know that optimizing each objective sepa-
rately leads to single-objective problems with different degrees of difficulty [16].
However, extending such a knowledge to the multi-objective setting is far from
being straightforward, given that different objective combinations can be consid-
ered. It is to notice that previous studies on the subject exist [2, 8]. We actually
extend them in different perspectives, as will be described in the following. In
particular, we restrict ourselves to the bi-objective PFSP. In fact, multiple pro-
posals considering bi-objective PFSP formulations and instances exist, but it is
not clear what are their differences and similarities, neither is clear their impact
on the performance of multi-objective algorithms. We are here specifically inter-
ested in measuring such an impact and eliciting in an explicit and comprehensive
manner the characteristics that makes a problem formulation and the character-
istics of problem instances more difficult to solve than another for Pareto local
search algorithms. Our contributions can be summarized as follows:

e By conducting an empirical analysis, we are able to study and characterize
small-size bi-objective PFSP instances in terms of the correlation between
the objective values, the number of Pareto optimal solutions, the number
of ranks in non-dominated sorting, and the number of Pareto local optimal
solutions for two widely-used neighborhood operators (namely exchange and
insert).

e By plugging these operators into the framework of the so-called Pareto Lo-
cal Search (PLS) algorithm [13], we conduct a comprehensive study on the
behavior of the so-obtained variants of PLS when applied to different bi-
objective PFSP formulations and instance types. It is to notice that PLS is
reported to be one of the state-of-the-art approach for bi-objective PFSP,
especially for small-size instances [12].

e As a byproduct, we are able to measure the individual effect of problem fea-
tures on the performance of PLS variants in terms of success rate, that is the
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probability to identify the whole Pareto set. More importantly, we report the
joint impact of these features by considering two scenarios: (i) predicting the
degree of difficulty of each instance for each algorithm variant, (ii) predict-
ing which algorithm variant performs better for a given instance. For each
scenario, a machine learning classification model based on random forests [4]
is considered and analyzed in order to measure and hence to quantify how
important problem features are when solving a particular instance. Our find-
ings reveal important knowledge on the impact of multimodality, in terms
of the proportion of Pareto local optimal solutions, in order to explain the
difficulty faced by PLS when solving bi-objective PFSP instances.

In the remainder, we first describe in Section 2 the considered PFSP, the cor-
responding pairs of objectives that we shall study, and the different types of
instances. In Section 3, we provide a comprehensive analysis and correlation
study for the considered problem characteristics. In Section 4, the individual
effect and the joint impact of problem features on algorithm performance are
analyzed. In Section 5, we conclude the paper and discuss some open questions.

2 Bi-objective permutation flowshop scheduling problems

The Permutation Flowshop Scheduling Problem (PFSP) is one of the most popu-
lar optimization problem from scheduling [16]. Most research typically deals with
a single-objective formulation aiming at minimizing the makespan, i.e. the final
completion time. However, many other criteria can be formalized, and multi-
objective PFSP formulations have also been investigated in the literature; see
e.g. [16] for on overview. This section introduces some necessary definitions and
presents different benchmark instances taken from the specialized literature.

Problem formulation and objectives. The PFSP consists in scheduling NV
jobs {J1,Ja, ..., Jn} on M machines {M;, My, ..., My }. Machines are critical
resources, i.e. two jobs cannot be assigned to the same machine at the same
time. A job J; is composed of M consecutive tasks {t;1,t;2,...,tin}, where tij
is the j*" task of the job J;, requiring the machine M;. A processing time p;; is
associated with each task t;;, and a due date d; is assigned to each job J;. We
here focus on the permutation PFSP, where the operating sequences of the jobs
are identical and unidirectional on every machine. A candidate solution can be
represented by a permutation of size N. Let X denote the set of all feasible so-
lutions (permutations). For an instance of N jobs, there exists | X | = N! feasible
solutions. To evaluate the schedule of a PFSP instance, many criteria may be
defined. In this study, we focus on minimizing two objectives (f1, f2) simultane-
ously from a panel of five criteria as listed in Table 1, and selected among the
most widely investigated ones from the literature [16]. Following the notations
from [16], this problem class is actually denoted as F/prmu, d;/#(f1, f2). Given
that the single-objective PFSP (minimizing each of these objectives separately)
is known to be NP-hard [16] for instances with more than two machines (M > 2),
bi-objective instances can typically not be solved to optimality.
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Table 1. PFSP objectives (C;(z) is the completion time of Job J; in schedule z).

name formulation description
Crmax(x) = max;eqi, Ny Ci(x) maximum completion time (makespan)
Coum(z) = Zie[[l,N]] Ci(z) sum of completion times
Tmax(%) = max;e1, vy max(0, Ci(x) — d;) maximum tardiness
Tsum () = 3 cp1, vy max(0, Ci(z) —di)  sum of tardiness
Teara(w) = |{i | Ci(x) > di,i € [1,N]}| number of late jobs

Definitions. Let Z C IR? denote the image of feasible solutions in the objective
space when using the function vector f = (f1, f2) such that Z = f(X). The
Pareto dominance relation is defined as follows. A solution x € X is dominated
by a solution 2’ € X, denoted as x < a’, if fi(2') < fr(z) for all k € {1,2},
with at least one strict inequality. A solution x € X is a Pareto optimal solution
(POS) if there does not exist any other solution 2’ € X such that < 2’. The
set of all POS is the Pareto set, and its mapping in the objective space is the
Pareto front. One of the most challenging issues in multi-objective optimization
is to identify a minimal complete Pareto set, i.e. one Pareto optimal solution
mapping to each point from the Pareto front. Since the PFSP is NP-hard [16],
heuristics appear to be well suited to identify a Pareto set approximation.

Problem instances. The most common and challenging set of single-objective
PFSP benchmark instances is due to Taillard [15]. Each instance file provides a
processing time p;; for each task ¢;;. Each processing time is generated following
a discrete uniform distribution: p;; ~ [ 1, 99 ]. These instances are restricted to
the objectives dealing with the completion time (i.e. Cpax, Csum ). Indeed, given
that no due date is provided, tardiness-related objectives (i.e. Trax, Tsum, Teard)
cannot be considered. For this reason, multiple researchers have been interested
in extending these single-objective instances by adding a due date d; for every
job J;. Three due date generation techniques are described below:

1. Inspired by Basseur et al. [3], we propose to generate the due dates following
the discrete uniform distribution: d; ~ [ 50-M , 1b_cmax |, where 1b_cmax is
a lower bound of the optimal makespan for the instance under consideration,
as defined in [15]. In [3], the authors used an upper bound instead of a lower
bound. Using a lower bound avoids us to use any prior external knowledge
(about the optimal solution) and likely results in tighter due dates. Hence,
a due date d; roughly lies between the average completion date of the first
scheduled job and an optimistic estimate of the best completion time.

2. Liefooghe et al. [11] propose to generate the due dates as follows: d; ~
[D-M, p-(N+M-1) ], such that p is the average-value of processing times.
As a consequence, if all processing times are the same, a due date d; would
lie between the completion date of the first and of the last scheduled job.

3. Unlike the previous approaches, Minella et al. [12] generate the due dates as:
d; ~ [ pr, pf-4], such that pf = Zje[[l,M]] pi; is the sum of the processing
times over all machines for job J;. The authors argue that this method
generates due dates that range from very tight to relatively tight values.
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Fig. 1. Objective space (N =8, M = 8, one instance).

We intuitively hypothesize that the way the due dates are generated, together
with the pair of objectives to be minimized, have a high impact on the bi-
objective PFSP instance to be solved. For this reason, we investigate the impact
of the choice of these parameters on the fitness landscape characteristics and
difficulty of small-size instances. More particularly, we consider the following
parameter setting. The problem size is set to a small value of N € {5,6,7,8} in
order to enumerate the solution space exhaustively, from |X| = 120 for N =5
up to |X| = 40320 for N = 8. The number of machines is M € {5,6,7,8}. For
each value of type, N and M, 10 independently generated PFSP instances are
considered. We investigate the following objective pairs: (f1, f2) € {(Cmaxs Tmax);
(Cmaxa Tsum)7 (Cmaxa Tcard)v (Csuma Tmax)a (Osuma Tsum)7 (CSUHU Tcard)}-

3 Problem features

In this section, we explore the characteristics of bi-objective PFSP instances in
terms of visualization of the objective space, correlation between the objective
values, number of Pareto optimal solutions, number of non-dominated fronts, and
number of Pareto local optimal solutions. The section ends with a correlation
analysis between each pair of those features and of the instance parameters.

Objective space. Following [2], in order to give a clear intuition of how the
different objectives relate one to the other, we show in Fig. 1 a simple inspection
of the objective space for one instance with N = 8 and M = 8. We can basically
see that different objective pairs results in different objective space and Pareto
front shapes. The objective space actually looks similar for the instances of type
basseur and liefooghe, which is clearly to contrast to minella. This is clearly
attributed to the differences of due date generation policies. Let us also observe
that the pair of objectives (Ciax,*) seems to provide the same objective space
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Fig. 2. Spearman rank correlation between the objective function values over the whole
solution space for all the instances.

shape than its counterpart (Csym,*) However, it is not clear that the convexity
of the Pareto front is also similar for different pairs of objectives. Notice also
that the degree of conflict between the two pairs of objectives (Cax, Tsum) and
(Csums Tmax) for both instance types liefooghe and basseur is less perceivable
than for the two pairs (Chmax, Tmax) and (Csum, Tsum), for which even the size of
the Pareto front seems to be relatively smaller. This informal observation is to
be extended in the next two paragraphs where the objective correlation and the
Pareto front cardinality are quantified and analyzed more explicitly.

Objective correlation. In Fig. 2, we summarize the degree of conflict between
the objectives by showing the box-plots obtained when computing the nonpara-
metric Spearman rank correlation coefficient between the objective function val-
ues over the whole solution space and for all the instances of each class. Recall
that the extreme value of 1 indicates a perfect correlation between the objective
values, whereas —1 indicates that they are highly conflicting. A value around 0
indicates that both objectives are uncorrelated. The first notable observation is
that the instances of type minella have a significantly smaller objective corre-
lation than the two other types, except for (Crax, Teard)- The second notable
observation is that all pairs of objectives are positively correlated, which sug-
gests that by improving f71, one has a high chance to also improve f,. This is
not surprising for PFSP because lowering the completion time naturally tends to
lower the value of other objectives, but this rather uncommon when compared
against other MOPs [7]. Notice that there exists a stronger correlation between
the objectives dealing with completion time and the sum/maximum tardiness
compared to the objective dealing with the number of late jobs, which might be
attributed to the high number of plateaus for this function. The lowest correla-
tion is for (Crax, Teara) which is validated by Fig. 1, where the convex envelope
of the objective space resembles a circle. The relatively high correlation between
the objectives suggests that the Pareto set cardinality shall be limited.

Pareto optimal solutions. In Fig. 3, we report the proportion of Pareto
optimal solutions (POS) in the solution space, computed and aggregated over all
the instances of the same type for N = 8 and M = 8. This is related to the notion
of intractability, which arises when the Pareto set cannot be enumerated in a
polynomial amount of time [7]. For those instances, the number of POS goes from
0.001% up to 0.1% of the solution space. Besides observing that the objective
pair has an impact on the proportion of POS, the most notable observation is
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Fig. 4. Proportion of non-dominated fronts in the solution space (N =8, M = 8).

that the instances of type minella have the highest proportion of POS for Ciax-
This is more mitigated when analyzing the proportion of POS involving Cyupy,.
At last, the instances of type liefooghe comes in second position, and typically
exhibit more POS than basseur, which again confirms that the distribution of
due date plays an important role in characterizing PFSP instances.

Non-dominated fronts. The previous feature provides a descriptive statistic
about the optimal Pareto set. In this section, we examine another measure about
how non-optimal solutions are structured. We use the same measure as [1] by
looking at the impact of PFSP instance parameters on the number of non-
dominated fronts. This is done by ranking all feasible solutions and layering
them into fronts based on non-dominated sorting [9]. In Fig. 4, we report the
proportion of non-dominated fronts, with respect to the size of the solution
space, computed and aggregated over all the instances of the same type, for
size N = 8 and M = 8, and for each objective pair. This measure can be
interpreted as follows. When it is close to 1, the landscape has many fronts
which contain few solutions. As this measure goes down to 0, all solutions tend
to gather into the same front. From 1 to 0, we then except fewer, but denser,
non-dominated fronts. For example, for N = 8, when the value is 0.01, we have
around 400 fronts, each one containing 100 solutions (i.e. 0.25% of the solution
space) in average. When the value is 0.05, we have around 2000 fronts, each
one containing 20 solutions (i.e. 0.5% of the solution space) in average. Roughly
speaking, when an instance has less POS, it tends to have more fronts. This
means that what happens for POS tend to uniformly generalize to the whole
solution space. We can observe that the objective pairs (Ciax,*) implies less
fronts than the objective pairs (Csum,*). We also can notice that the instance
type does not have a significant impact on the number of fronts, except for
the instances of type minella which have less fronts than the instances of type
basseur and liefooghe when considering the objective pairs (%, Tsum)-
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Fig. 5. Proportion of POS per PLOS (N =8, M = 8).

Pareto local optimal solutions. The previous considered features are algo-
rithm-independent in the sense that they do not rely on any particular optimiza-
tion technique or operator. However, we are also interested in the multimodality,
in terms of the number of local optima, of the multi-objective landscape induced
by a given PFSP instance and a given neighborhood operator. Hence, we con-
sider a feature that shall directly relate to the search process implied by a local
search algorithm for solving the PFSP. Since we are dealing with permutations,
we consider the following conventional neighborhood operators [10]:

e The exchange neighborhood, for which two solutions are neighbors iff one can
be obtained from the other by exchanging two jobs at arbitrary positions.

e The insert neighborhood, for which two solutions are neighbors iff one can be
obtained from the other by removing a job at a given position and inserting
it at another position, hence shifting all other jobs in between.

For both operators, the neighborhood size is quadratic in N, although the in-
sert neighborhood is larger by a factor of about two. Considering these two
neighborhood operators, we investigate the number of Pareto local optimal solu-
tions (PLOS) with respect to the different formulations and problem instances.
A PLOS is simply a solution which is not dominated by any of its neighbors [13].
In fact, POS are also PLOS, and they are taken into account in our analysis. In
Fig. 5, we show a statistic on the proportion of PLOS, computed over all the
instances of the same type, for size N = 8 and M = 8. To be more precise, we
report the proportion of POS divided by the proportion of PLOS, which relates
global and local optima and which can be interpreted as follows. When this mea-
sure is 1, every local optima is a global optima. On the contrary, as this measure
goes down to 0, the proportion of PLOS increase substantially, which eventually
can be interpreted as having a problem instance which is more challenging to
solve for a local search procedure. In fact, when the number of PLOS increases,
the local search procedure is more likely to be trapped into local optima, and
it is then eventually more difficult for the algorithm to find a new POS. The
most notable observation from Fig. 5 is that, when comparing the two neigh-
borhood operators, it appears that the exchange operator induces more difficult
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landscapes, whatever the instance type and the objective pair. In fact, the in-
sert neighborhood, which is slightly larger, induces less PLOS. This means that
we expect the induced landscape to be easier to search. We can also remark
that, overall, the objective pairs (Chax, *x) induce more PLOS than the objective
pairs (Csum, %), especially for instances of type minella. This indicates that the
instances corresponding to the former shall be more difficult to solve than the
ones corresponding to the latter. In particular, for the objective pairs (Ciax, %),
instances of type minella have typically less PLOS, whereas there is not much
difference between the instance types for (Csum, *). Finally, we can observe that,
apart from a few exceptions, no significant difference in the range of the number
of PLOS can be reported when comparing the two other instance types.

A correlation analysis on problem features. To conclude this section, we
provide in Fig. 6 a correlation analysis between the different considered features.
The goal here is to study and to quantify the association between features. Notice
that we consider six numerical features (N, M, objective correlation, number of
POS, of fronts, of PLOS) and three categorical ones (instance types, neighbor-
hood structures, and objective pairs). When comparing two numerical features,
a Spearman nonparametric correlation coefficient is computed and reported to-
gether with a scatter plot and a simple linear regression. When the association
between a numerical feature and a categorical one is considered, the density of
feature values in every category is shown, as well as box-plots. Notice that, de-
pending on the pair of features considered, the instances are mixed accordingly
in Fig. 6 in order to provide a big picture summarizing and generalizing all our
findings so far, of course in a more coarse-grained fashion.

Let us start with the problem size N (3rd line, 3rd column). We observe that
it has no impact on the correlation between the objectives. However, when N
grows, the proportional number of POS decreases, the proportional number of
fronts decreases, and the proportional number of PLOS increases. More surpris-
ingly, M (4th line, 4th column) does not show any correlation with the other
features. Next, when the objective correlation grows (5th line, 5th column), the
proportional number of POS decrease, the proportional number of fronts in-
crease, and the number of PLOS decreases. When the number of POS grows
(6th line, 6th column), the proportional number of fronts grows. Although this
might seem surprising at first sight, we actually argue that this is an artifact due
of mixing instances with different N —values, as one can guess by observing the
clustering effect in the scatter plot. Actually, when considering each N —value
separately, the proportional number of fronts slightly decreases. In addition, we
can see that the larger the number of POS, the proportionally fewer the number
of PLOS. As for the proportional number of non-dominated fronts (7th line, 7th
column), it is negatively correlated with the number of PLOS.

This correlation analysis indicates that there is a relatively high interaction
between some of the features. We hypothesize that they are actually impactful in
terms of instance difficulty. In the following, we consider to effectively study the
association between problem features and instance difficulty by experimentally
appreciating the ability of a dedicated algorithm class to solve PFSP instances.
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4 Problem features vs. algorithm performance

In order to elicit the impact of the previous features on the performance of
solving a given PFSP instance, we consider the so-called Pareto Local Search
(PLS) algorithm [13]. PLS has proved extremely relevant to solve different com-
binatorial MOPS, including the PFSP [6,8,12]. We first recall its algorithmic
components and the way it is instantiated and experimented for the PFSP.

Algorithm description and performance assessment. PLS maintains an
unbounded archive A of mutually non-dominated solutions. This archive is ini-
tialized with one (random) initial solution from the solution space. At each
iteration, one (unvisited) solution is selected at random from the archive z € A.
All neighboring solutions A (z) from z are then exhaustively evaluated. This
of course assumes given a neighborhood relation. The non-dominated solutions
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from A U N(x) are stored in the archive, and the current solution x is then
flagged as visited to avoid a useless revaluation of its neighborhood. The algo-
rithm naturally stops once all solutions from the archive are flagged as visited.
PLS always terminates and returns a maximal Pareto local optimum set [13].
In this work, we experiment PLS using the two previously-defined neighborhood
operators, namely exchange and insert, hence ending with two PLS variants. To
experiment the so-obtained variants and their relative performance, we consider
to run them on the considered instances (30 independent runs for each instance),
and to compute the success rate, that is the proportion of runs where PLS is
able to identify the Pareto set. The success rate can be interpreted as the em-
pirical probability of solving a given instance to optimality. Notice that, since
the considered instances are of small size, this measure is fully accurate for the
purpose of our study by avoiding the biases that other performance indicators
and their corresponding parameters could introduce. Before studying the impact
of problem features, we start by summarizing the main empirical observations
with respect to the success rate of PLS on the different instance classes.

Exploratory analysis. In Fig. 7, we report the success rate of both PLS vari-
ants for instances of size N = 8 and M = 8. The first notable observation is that,
independently of the instance type or neighborhood, the success rate is lower for
the objective pairs (Ciax,*) than for (Csum,*). This is in accordance with our
observations on the number of PLOS, where the former objective pairs were in-
tuited as more difficult to solve. Similarly, we can observe that the considered
instances are overall less difficult to solve for PLS when using the insert neigh-
borhood than when using the exchange neighborhood, which we can directly
relate to our observation about PLOS. Actually, the objective pairs (Csum,*)
for the instances of type minella are relatively easy to solve when using the
insert neighborhood, with a median success rate above 50%. On the contrary,
the instances of type basseur seem to provide the overall lowest success rate,
which indicates that they are the most challenging for PLS. Over the objective
pairs (Chax, %), the instances of type liefooghe are found to be relatively easier
to solve than minella, whereas this is not the case for (Cyym,*).
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Correlation analysis. In the following, we want to understand the relation
between the problem features and the success rate of PLS over all the instances.
We here focus on this association across instance classes. In order to measure this
association within instance classes, we rather suggest to follow a mixed model
analysis such as [5]. In Fig. 8, we can first appreciate the distribution of suc-
cess rates for both PLS variants over all the instances. Basically, we can observe
many failures when using the exchange neighborhood, and relatively more suc-
cess when using the insert neighborhood. In Figs. 9-10, we report the correlation
between the success rate and the considered features. Although the two oper-
ators have different behavior in terms of the distribution of their success rate
(Fig. 8), we can now observe that their performance is correlated in the same
manner with the considered features. In particular, we found a relatively high
correlation of success rate with the problem size N, as well as with the number
of fronts, of POS, and of PLOS. Interestingly, the correlation with the pair of
objectives is rather low, which indicates that the performance of PLS is more
impacted by the underlying structure of the PFSP fitness landscape, indepen-
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dently of the nature of the objectives to be optimized. Similarly, the success rate
is not impacted by the instance type, which could seem surprising at a first sight.
We attribute this to the relatively high variance of success rate across all the
instances of same type. Unsurprisingly, the instance difficulty increase with NV,
since we can see that the success rate decreases with IV for both operators. How-
ever, the difficulty stays constant whatever the value of M, which is to be related
to the very low correlation that was found previously between M and the other
considered features. When examining how the performance relates with the ob-
jective correlation, we can see that the expected success rate estimation follows
a more complicated trend. This is also the reason why the correlation between
objective correlation and success rate is low in Fig. 9, i.e. the local regression
curve does not follow a monotonic function but rather has a U-shape. Notice
also that PFSP instances tend to be easier when the objectives are conflicting
(although we only observed few instances in such cases, so that the confidence
interval is large), or on the contrary highly correlated. However, when the objec-
tive correlation is close to zero, the success rate is smaller for both PLS variants.
As for the correlation with the proportion of POS, the general trend of the local
regression curve clearly indicates that the success rate increases as the number
of POS grows (this also holds when the proportion of POS is very low, that is
when the absolute number of POS is 1). This might be explained as follows.
When the number of non-dominated solutions is large, the archive maintained
by PLS is typically large. Hence, the probability to get trapped in a Pareto local
optimum set [13] decreases, so that PLS is able to run longer and to find bet-
ter approximation sets. This means that it is easier for PLS to find the whole
Pareto front when it is larger. This is to be mitigated by the runtime required to
effectively find all optimal solutions, which we do not report in this paper due to
space restriction. Actually, we observed that the runtime of PLS is much larger
when the number of POS is large. At last, as expected, when the proportional
number of PLOS increases, PFSP instances are typically more difficult, and then
the success rate of PLS decreases, independently of the neighborhood operator.

Relative importance. The correlation analysis provided in the previous sec-
tion allowed to us to highlight the individual impact and effect of each feature
on the performance of PLS. However, this does not tell us the combined effect
of those features. In the following, we investigate this issue by considering a ma-
chine learning perspective for classification. More specifically, we consider the
two following complementary scenarios: (i) predicting the degree of difficulty of
an instance for each algorithm variant, and (ii) predicting which algorithm vari-
ant (PLS with insert or PLS with exchange) performs better for a given instance.
For each scenario, a classification model based on random forests (RF) is first
constructed using the different considered features as input variables. RF is a
state-of-the-art ensemble learning method based on the construction of multiple
decision trees that outputs the mode of the classes of the individual trees [4].
In the first scenario, the output of the RF model is the class of difficulty of a
given instance. Given the distribution of success rates depicted in Fig. 8, we
divided PFSP instances into three classes: easy instances for which the success
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rate is 1 (265 for exchange, 1134 for insert), hard instances for which the suc-
cess rate is 0 (657 for exchange, 243 for insert), moderate instances for which
the success rate is in-between 0 and 1 (1958 for exchange, 1503 for insert). The
estimate of error rate of the corresponding RF model is 22.33% for exchange,
and 26.56% for insert. In the second scenario, the output class of the RF model
is simply whether PLS with insert has a better success rate than PLS with ex-
change for a given instance. In case both variants have the same success rate,
the one which evaluated the smallest number of solutions in average is said to
be better. PFSP instances are then divided into two classes: 808 instances for
which PLS-exchange is better, and 2072 instances for which PLS-insert is better.
The estimate of error rate of the corresponding RF model is 23.40%.
Interestingly, RF has the ability to render the relative importance of each in-
put variable (here, features), given in terms of the mean decrease in accuracy [4].
This measure is depicted in Fig. 11 for the first scenario and in Fig. 12 for the
second one. We clearly see that the most important feature relates to the pro-
portional number of PLOS. This emphasizes the high impact of multimodality
on the difficulty of PFSP instances and on the performance of multi-objective
local search. It is also interesting to remark that the next important features are
those of general-purpose nature which were specifically investigated in the paper.
In fact, the number of POS, the number of fronts and the objective correlation
are all found to be more important than the other features that relates directly
to the benchmark parameters, namely N, M, the pair of objectives (with the
exception of scenario 1 for the insert neighborhood), and the instance type.

5 Conclusions

The multi-objective fitness landscape analysis conducted in this paper allowed
us to comprehensively relate the characteristics of bi-objective PFSP instances
with the sources of difficulty faced by Pareto local search. From the method-
ological point of view, we argue that the investigated features and the statistical
tools involved all along the paper revealed to be highly valuable in order to ac-
curately harness the complexity of a multi-objective search process, in particular
by emphasizing the crucial importance of multimodality. It is our hope that the
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approach adopted in this paper, as well as our findings regarding the PFSP,
will enable to tackle other challenging issues, both from the algorithm design
perspective and the more practical problem solving perspective. In fact, lever-
aging our analysis to other multi-objective scheduling problems and algorithms
is still an open challenge in terms of scalability (e.g., large-size instances with
more than two objectives, low-cost feature computation or estimation). Tightly
related to this issue, a particularly challenging research path would be to set up
a sound and complete methodology for algorithm performance prediction, with
the ultimate goal of selecting the most appropriate ones for a given instance.
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