Abstract
We study the difficulty of solving different bi-objective formulations of the permutation flowshop scheduling problem by adopting a fitness landscape analysis perspective. Our main goal is to shed the light on how different problem features can impact the performance of Pareto local search algorithms. Specifically, we conduct an empirical analysis addressing the challenging question of quantifying the individual effect and the joint impact of different problem features on the success rate of the considered approaches. Our findings support that multi-objective fitness landscapes enable to devise sound general-purpose features for assessing the expected difficulty in solving permutation flowshop scheduling problems, hence pushing a step towards a better understanding of the challenges that multi-objective randomized search heuristics have to face.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguirre, H., Tanaka, K.: Working principles, behavior, and performance of MOEAs on MNK-landscapes. Eur. J. Oper. Res. 181(3), 1670–1690 (2007)
Basseur, M., Liefooghe, A.: Metaheuristics for biobjective flow shop scheduling. In: Metaheuristics for Production Scheduling, Chap. 9, pp. 225–252. Wiley (2013)
Basseur, M., Seynhaeve, F., Talbi, E.G.: Design of multi-objective evolutionary algorithms: application to the flow shop scheduling problem. In: CEC 2002, NJ, USA, pp. 1151–1156 (2002)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Daolio, F., Liefooghe, A., Verel, S., Aguirre, H., Tanaka, K.: Problem features vs. algorithm performance on rugged multi-objective combinatorial fitness landscapes. Evol. Comput. (to appear)
Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236 (2011)
Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)
Geiger, M.: On operators and search space topology in multi-objective flow shop scheduling. Eur. J. Oper. Res. 181(1), 195–206 (2007)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)
Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2004)
Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.-G.: Combinatorial optimization of stochastic multi-objective problems: an application to the flow-shop scheduling problem. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 457–471. Springer, Heidelberg (2007)
Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS J. Comput. 20(3), 451–471 (2008)
Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective combinatorial optimization problems. Ann. Oper. Res. 156(1), 83–97 (2007)
Richter, H., Engelbrecht, A. (eds.): Recent Advances in the Theory and Application of Fitness Landscapes. Springer, Heidelberg (2014)
Taillard, E.D.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993)
T’Kindt, V., Billaut, J.C.: Multicriteria Scheduling: Theory, Models and Algorithms. Springer, Heidelberg (2005)
Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives. Eur. J. Oper. Res. 227(2), 331–342 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Liefooghe, A., Derbel, B., Verel, S., Aguirre, H., Tanaka, K. (2017). A Fitness Landscape Analysis of Pareto Local Search on Bi-objective Permutation Flowshop Scheduling Problems. In: Trautmann, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer Science(), vol 10173. Springer, Cham. https://doi.org/10.1007/978-3-319-54157-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-54157-0_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54156-3
Online ISBN: 978-3-319-54157-0
eBook Packages: Computer ScienceComputer Science (R0)