Skip to main content

Heterogeneous Evolutionary Swarms with Partial Redundancy Solving Multi-objective Tasks

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10173))

Included in the following conference series:

Abstract

Consider a self-organized system of heterogeneous reconfigurable agents solving a multi-objective task. In this paper we analyze an evolutionary approach to make such a system adaptable. In principle, this system is comparable to a multi-objective genetic algorithm, however, requires asynchronous generations and decentralized evaluation- and selection processes. The primary objective of this paper is to introduce the proposed system, to provide several interesting theoretic properties and a primary experimental analysis. The heritable material (genes) compromises a parameter set that encodes an agents configuration and can be communicated between agents. We introduce partial redundancy into the system by supplying a certain number of agents with two parameter sets instead of one. These agents are denoted as redundant and are free to chose which of their two parameter sets is applied. A special focus lies on two strategies for the agents to derive a fitness value based on their property set(s) and the respective objective functions of the multi-objective task suitable for decentralized systems. A slightly more sophisticated approach with weights for each of the objectives performs just as good as a simple method where agents pick the best or respectively worst objective value. The results show that systems with low redundancy tend to lose a lot of diversity, however, redundant systems are slower in their adaptive process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013)

    Article  Google Scholar 

  2. Bowers, R.I., Sevinç, E.: Preserving variability in sexual multi-agent systems with diploidy and dominance. In: Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963, pp. 184–202. Springer, Heidelberg (2006). doi:10.1007/11759683_12

    Chapter  Google Scholar 

  3. Bowman, V.J.: On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. In: Thiriez, H., Zionts, S. (eds.) Multiple Criteria Decision Making. LNE, vol. 130, pp. 76–86. Springer, Heidelberg (1976)

    Chapter  Google Scholar 

  4. Calabretta, R., Galbiati, R., Nolfi, S., Parisi, D.: Two is better than one: a diploid genotype for neural networks. Neural Process. Lett. 4(3), 149–155 (1996)

    Article  Google Scholar 

  5. Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: ICGA, pp. 59–68 (1987)

    Google Scholar 

  6. Haasdijk, E., Eiben, A., Winfield, A.: Individual, social and evolutionary adaptation in collective systems. In: Handbook of Collective Robotics, pp. 413–471. Pan Stanford, May 2013. http://dx.doi.org/10.1201/b14908-15

  7. Hanna, L., Cagan, J.: Evolutionary multi-agent systems: an adaptive and dynamic approach to optimization. J. Mech. Des. 131(1), 011010 (2008). http://dx.doi.org/10.1115/1.3013847

    Article  Google Scholar 

  8. Herrera, F., Lozano, M.: Adaptation of genetic algorithm parameters based on fuzzy logic controllers. Genet. Algorithms Soft Comput. 8, 95–125 (1996)

    Google Scholar 

  9. Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. Eur. J. Oper. Res. 137(1), 50–71 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Knowles, J.D., Corne, D.: Towards landscape analyses to inform the design of hybrid local search for the multiobjective quadratic assignment problem. HIS 87, 271–279 (2002)

    Google Scholar 

  11. Leung, K.S., Duan, Q.H., Xu, Z.B., Wong, C.: A new model of simulated evolutionary computation-convergence analysis and specifications. IEEE Trans. Evol. Comput. 5(1), 3–16 (2001)

    Article  Google Scholar 

  12. Lumley, A.J., Michalczyk, L., Kitson, J.J.N., Spurgin, L.G., Morrison, C.A., Godwin, J.L., Dickinson, M.E., Martin, O.Y., Emerson, B.C., Chapman, T., Gage, M.J.G.: Sexual selection protects against extinction. Nature 522(7557), 470–473 (2015). http://dx.doi.org/10.1038/nature14419

    Article  Google Scholar 

  13. Mauldin, M.L.: Maintaining diversity in genetic search. In: AAAI, pp. 247–250 (1984)

    Google Scholar 

  14. Moritz, R., Middendorf, M.: Evolutionary inheritance mechanisms for multi-criteriadecision making in multi-agent systems. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, GECCO 2015, NY, USA, pp. 65–72. ACM, New York (2015)

    Google Scholar 

  15. Moritz, R., Mostaghim, S.: The influence of heredity models on adaptability in evolutionary swarms. In: Proceedings of the Conference on Genetic and Evolutionary Computation, GECCO 2016, NY, USA. ACM, New York (2016, to appear)

    Google Scholar 

  16. Moritz, R.L.V., Reich, E., Bernt, M., Middendorf, M.: A property preserving method for extending a single-objective problem instance to multiple objectives with specific correlations. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 18–33. Springer International Publishing, Cham (2016). doi:10.1007/978-3-319-30698-8_2

    Chapter  Google Scholar 

  17. Normark, B.B.: The evolution of alternative genetic systems in insects. Annu. Rev. Entomol. 48(1), 397–423 (2003)

    Article  Google Scholar 

  18. Normark, B.B.: Perspective: maternal kin groups and the origins of asymmetric genetic systems-genomic imprinting, haplodiploidy, and parthenogenesis. Evol. Int. J. Org. Evol. 60, 631–642 (2006)

    Google Scholar 

  19. Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton. Agent. Multi-Agent Syst. 11(3), 387–434 (2005)

    Article  Google Scholar 

  20. ’t Hoen, P.J., Jong, E.D.: Evolutionary multi-agent systems. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 872–881. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30217-9_88

    Chapter  Google Scholar 

  21. Potts, J.C., Giddens, T.D., Yadav, S.B.: The development and evaluation of an improved genetic algorithm based on migration and artificial selection. IEEE Trans. Syst. Man Cybern. 24(1), 73–86 (1994)

    Article  Google Scholar 

  22. Shibata, T., Fukuda, T.: Coordinative behavior by genetic algorithm and fuzzy in evolutionary multi-agent system. In: 1993 Proceedings of the IEEE International Conference on Robotics and Automation, pp. 760–765. IEEE (1993)

    Google Scholar 

  23. Smith, J.M.: The Evolution of Sex, vol. 32. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  24. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: Analyzing the effect of objective correlation on the efficient set of MNK-landscapes. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 116–130. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_9

    Chapter  Google Scholar 

  25. Whitacre, J.M., Rohlfshagen, P., Bender, A., Yao, X.: The role of degenerate robustness in the evolvability of multi-agent systems in dynamic environments. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 284–293. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15844-5_29

    Google Scholar 

  26. Xu, Y., Qu, R., Li, R.: A simulated annealing based genetic local search algorithm for multi-objective multicast routing problems. Ann. Oper. Res. 206(1), 527–555 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yukiko, Y., Nobue, A.: A diploid genetic algorithm for preserving population diversity — Pseudo-Meiosis GA. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 36–45. Springer, Heidelberg (1994). doi:10.1007/3-540-58484-6_248

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruby L. V. Moritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Moritz, R.L.V., Mostaghim, S. (2017). Heterogeneous Evolutionary Swarms with Partial Redundancy Solving Multi-objective Tasks. In: Trautmann, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer Science(), vol 10173. Springer, Cham. https://doi.org/10.1007/978-3-319-54157-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54157-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54156-3

  • Online ISBN: 978-3-319-54157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics