Skip to main content

Design Perspectives of an Evolutionary Process for Multi-objective Molecular Optimization

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10173))

Included in the following conference series:

Abstract

Simultaneous optimization of several physiochemical properties is an important task in the drug design process. Molecule optimization formulated as optimization problems usually provide several conflicting objectives. The number of molecular properties as well as the cost-intensive methods of molecule property prediction are stringent requirements to in silico aided drug design process. Numerical approximations of the physiochemical molecule properties are challenging and in vitro methods are still essential. The objective of an in silico aided drug design process is the evolution of a multi-objective evolutionary process with the potential of a selected number of improved molecule identification within a very low iteration number for a further efficient laboratory examinations. This paper presents design perspectives of a multi-objective evolutionary process that identifies a wide variety of genetic different but selected number of optimized molecules within a low number of generations. Its search behavior is compared to NSGA-II. Furthermore, limitations of the proposed algorithm are demonstrated with regard to its performance in many-objective molecular optimization and potential concepts of adaptations for this purpose are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Otvos, L.: Peptide-Based Drug Design: Methods and Protocols. Humana Press Inc., New York City (2000)

    Google Scholar 

  2. Röckendorf, N., Borschbach, M., Frey, A.: Molecular evolution of peptide ligands with custom-tailored characteristics. PLOS Comput. Biol. 8(12), e1002800 (2012). doi:10.1371/journal.pcbi.1002800

    Article  Google Scholar 

  3. Singh, J., Ator, M.A., Jaeger, E.P., et al.: Application of genetic algorithms to combinatorial synthesis: a computational approach to lead identification and lead optimization. J. Am. Chem. Soc. 118, 1669–1676 (1996)

    Article  Google Scholar 

  4. Hohm, T., Limbourg, P., Hoffmann, D.: A multiobjective evolutionary method for the design of peptidic mimotopes. J. Comput. Biol. 13(1), 113–125 (2006)

    Article  MathSciNet  Google Scholar 

  5. Oduguwa, A., Tiwari, A., Fiorentino, S.: Multi-objective optimization of the protein-ligand docking problem in drug discovery. In: Genetic and Evolutionary Computation Conference, GECCO 2006, pp. 1793–1800 (2006)

    Google Scholar 

  6. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  7. Knowles, J.D., Corne, D.W.: The Pareto archived evolution strategy : a new baseline algorithm for Pareto multiobjective optimisation. In: Proceedings of the Congress on Evolutionary Computation (CEC 1999), pp. 98–105 (1999)

    Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Lee, I.-H., Shin, S.-Y., Zhang, B.-T.: DNA sequence optimization using constrained multi-objective evolutionary algorithm. In: Evolutionary Computation, CEC 2003, pp. 2270–2276 (2003)

    Google Scholar 

  10. Deb, K., Reddy, A.: Reliable classification of two-class cancer data using evolutionary algorithms. BioSystems 72, 111–129 (2003)

    Article  Google Scholar 

  11. Kershenbaum, A.: When genetic algorithms work best. INFORMS J. Comput. 9(3), 254–255 (1997)

    Article  Google Scholar 

  12. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Ramesh, S., Kannan, S., Baskers, S.: Application of modified NSGA-II algorithms to multi-objective reactive power planning. Appl. Soft Comput. 12(2), 741–753 (2012)

    Article  Google Scholar 

  14. Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-objective optimization: an engineering design perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 14–32. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31880-4_2

    Chapter  Google Scholar 

  15. Rosenthal, S., El-Sourani, N., Borschbach, M.: Impact of different recombination methods in a mutation-specific MOEA for a biochemical application. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds.) EvoBIO 2013. LNCS, vol. 7833, pp. 188–199. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37189-9_17

    Chapter  Google Scholar 

  16. Rosenthal, S., Borschbach, M.: A benchmark on the interaction of basic variation operators in multi-objective peptide design evaluated by a three dimensional diversity metric and a minimized hypervolume. In: Emmerich, M., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation IV, pp. 139–153. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Rosenthal, S., Borschbach, M.: Average cuboid volume as a convergence indicator and selection criterion for multi-objective biochemical optimization. In: Tantar, E., Tantar, A.-A., Bouvry, P., Del Moral, P., Legrand, P., Coello Coello, C.A., Schütze, O. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation. Springer, Heidelberg (2015)

    Google Scholar 

  18. Bäck, T., Schütz, M.: Intelligent mutation rate control in canonical genetic algorithm. In: Proceedings of the International Symposium on Methodology for Intelligent systems, pp. 158–167 (1996)

    Google Scholar 

  19. BioJava: CookBook, release 3.0. http://www.biojava.org/wiki/BioJava

  20. Small, B.M., McColl, B.W., Allmendinger, R., et al.: Efficient discovery of anti-inflammatory small-molecule combinations using evolutionary computing. Nat. Chem. Biol. 7, 902–908 (2011)

    Article  Google Scholar 

  21. Sliwoski, G., Kothiwale, S., Meiler, J., Lowe, E.D.: Computational methods in drug discovery. Pharmacol Rev. 66(1), 334–395 (2014)

    Article  Google Scholar 

  22. Guruprasad, K., Reddy, B., Pandit, M.: Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary structure. Protein Eng. 4(2), 155–161 (1990)

    Article  Google Scholar 

  23. Sanchez-Faddeev, H., Emmerich, M., Verbeek, F., et al.: Using multiobjective optimization and energy minimization to design an Isoform-selective ligand of the 14-3-3 protein. In: International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, pp. 12–24 (2012)

    Google Scholar 

  24. Rosenthal, S., Borschbach, M.: Average cuboid volume as a convergence indicator and selection criterion for multi-objective biochemical optimization. In: Emmerich, M., Deutz, A., Schütze, O., Legrand, P., Tantar, E., Tantar, A.-A. (eds.) EVOLVE - A Bridge Between Probability. Set Oriented Numerics and Evolutionary Computation VII. Springer, Heidelberg (2017). doi:10.1007/978-3-319-49325-1_9

    Google Scholar 

  25. Hopp, T.P., Woods, K.R.: A computer program for predicting protein antigenic determinants. Mol. Immunol. 20(4), 483–489 (1983)

    Article  Google Scholar 

  26. Rosenthal, S., Borschbach, M.: Impact of population size and selection within a customized NSGA-II for biochemical optimization assessed on the basis of the average cuboid volume indicator. In: Proceedings of the Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies, BIOTECHNO 2014, Charmonix, April 2014

    Google Scholar 

  27. Wang, H., Jin, Y., Yao, X.: Diversity assessment in many-objective optimization. IEEE Trans. Cybern. PP(99), 1–13 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susanne Rosenthal or Markus Borschbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rosenthal, S., Borschbach, M. (2017). Design Perspectives of an Evolutionary Process for Multi-objective Molecular Optimization. In: Trautmann, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer Science(), vol 10173. Springer, Cham. https://doi.org/10.1007/978-3-319-54157-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54157-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54156-3

  • Online ISBN: 978-3-319-54157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics