Skip to main content

Saliency Detection via Diversity-Induced Multi-view Matrix Decomposition

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10111))

Included in the following conference series:

Abstract

In this paper, a diversity-induced multi-view matrix decomposition model (DMMD) for salient object detection is proposed. In order to make the background cleaner, \(\mathrm {Schatten}\)-p norm with an appropriate value of p in (0,1] is used to constrain the background part. A group sparsity induced norm is imposed on the foreground (salient part) to describe potential spatial relationships of patches. And most importantly, a diversity-induced multi-view regularization based Hilbert-Schmidt Independence Criterion (HSIC), is employed to explore the complementary information of different features. The independence between the multiple features will be enhanced. The optimization problem can be solved through an augmented Lagrange multipliers method. Finally, high-level priors are merged to boom the salient regions detection. Experiments on the widely used MSRA-5000 dataset show that the DMMD model outperforms other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuo, W., Meng, D., Zhang, L., Feng, X., Zhang, D.: A generalized iterated shrinkage algorithm for non-convex sparse coding. In: ICCV, pp. 217–224 (2013)

    Google Scholar 

  2. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR, pp. 1155–1162 (2013)

    Google Scholar 

  3. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.: Saliency detection via graph-based manifold ranking. In: CVPR, pp. 3166–3173 (2013)

    Google Scholar 

  4. Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: Contrast based filtering for salient region detection. In: CVPR, pp. 733–740 (2012)

    Google Scholar 

  5. Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., Li, S.: Automatic salient object segmentation based on context and shape prior. In: BMVC (2011)

    Google Scholar 

  6. Shen, X., Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. In: CVPR, pp. 853–860 (2012)

    Google Scholar 

  7. Cheng, M.-M., Zhang, G., Mitra, N.J., Huang, X., Hu, S.-M.: Global contrast based salient region detection. In: CVPR, pp. 409–416 (2011)

    Google Scholar 

  8. Chang, K.-Y., Liu, T.-L., Chen, H.-T., Lai, S.-H.: Fusing generic objectness and visual saliency for salient object detection. In: ICCV, pp. 914–921 (2011)

    Google Scholar 

  9. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: CVPR, pp. 2814–2821 (2014)

    Google Scholar 

  10. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: ICML, pp. 663–670 (2010)

    Google Scholar 

  11. Lang, C., Liu, G., Yu, J., Yan, S.: Saliency detection by multitask sparsity pursuit. IEEE Trans. Image Process. 21, 1327–1338 (2012)

    Article  MathSciNet  Google Scholar 

  12. Zou, W., Kpalma, K., Liu, Z., Ronsin, J.: Segmentation driven low-rank matrix recovery for saliency detection. In: BMVC (2013)

    Google Scholar 

  13. Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58, 11–20 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, Z., Chen, M.-M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arxiv:1009.5055 (2010)

  15. Peng, H., Li, B., Ji, R., Hu, W., Xiong, W., Lang, C.: Salient object detection via low-rank and structured sparse matrix decomposition. In: AAAI, pp. 796–802 (2013)

    Google Scholar 

  16. Simoncelli, E., Freeman, W.: The steerable pyramid: A flexible architecture for multi-scale derivative computation. In: ICIP (1995)

    Google Scholar 

  17. Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms: Theory and Applications. Birkhäuser, Basel (2012)

    MATH  Google Scholar 

  18. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 12, 2274–2282 (2012)

    Article  Google Scholar 

  19. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)

    Article  Google Scholar 

  20. Cetin, M., Karl, W.C.: Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization. IEEE Trans. Image Process. 10, 623–631 (2001)

    Article  MATH  Google Scholar 

  21. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Sig. Process. Lett. 14, 707–710 (2007)

    Article  Google Scholar 

  22. Chartrand, R., Staneva, V.: Restricted isometry properties and nonconvex compressive sensing. Inverse Prob. 24, 657–682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cao, X., Zhang, C., Fu, H., Liu, S., Zhang, H.: Diversity-induced multi-view subspace clustering. In: CVPR, pp. 586–594 (2015)

    Google Scholar 

  24. Peng, H., Li, B., Ling, H., Hu, W., Xiong, W., Maybank, S.J.: Salient object detection via structured matrix decomposition. IEEE Trans. Pattern Anal. Mach. Intell. (2016). In Press

    Google Scholar 

  25. Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering via canonical correlation analysis. In: ICML, pp. 129–136 (2009)

    Google Scholar 

  26. Tang, W., Lu, Z., Dhillon, I.S.: Clustering with multiple graphs. In: ICDM, pp. 1016–1021 (2009)

    Google Scholar 

  27. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1548–1560 (2011)

    Article  Google Scholar 

  28. Tong, N., Lu, H., Ruan, X., Yang, M.-H.: Salient object detection via bootstrap learning. In: CVPR, pp. 1884–1892 (2015)

    Google Scholar 

  29. Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.-H.: Saliency detection via dense and sparse reconstruction. In: ICCV, pp. 2976–2983 (2013)

    Google Scholar 

  30. Zhang, X., Sun, X., Xu, C., Baciu, G.: Multiple feature distinctions based saliency flow model. Pattern Recogn. 54, 190–205 (2016)

    Article  Google Scholar 

  31. Zhang, X., Xu, C., Sun, X., Baciu, G.: Schatten-q regularizer constrained low rank subspace clustering model. Neurocomputing 182, 36–47 (2016)

    Article  Google Scholar 

  32. He, Z., Sun, X., Zhang, X., Xu, C.: Saliency detection via nonconvex regularization based matrix decomposition. In: International Conference on Computational Intelligence and Security, pp. 243–247 (2015)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the National Natural Science Funds of China (Grant Nos. 61472257, 61402290, 61401287) and in part by the Natural Science Foundation of Shenzhen under Grant JCYJ 20160307154003475 and 2016050617251253.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sun, X., He, Z., Zhang, X., Zou, W., Baciu, G. (2017). Saliency Detection via Diversity-Induced Multi-view Matrix Decomposition. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10111. Springer, Cham. https://doi.org/10.1007/978-3-319-54181-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54181-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54180-8

  • Online ISBN: 978-3-319-54181-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics