Skip to main content

Variational Gaussian Process Auto-Encoder for Ordinal Prediction of Facial Action Units

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10112))

Included in the following conference series:

Abstract

We address the task of simultaneous feature fusion and modeling of discrete ordinal outputs. We propose a novel Gaussian process (GP) auto-encoder modeling approach. In particular, we introduce GP encoders to project multiple observed features onto a latent space, while GP decoders are responsible for reconstructing the original features. Inference is performed in a novel variational framework, where the recovered latent representations are further constrained by the ordinal output labels. In this way, we seamlessly integrate the ordinal structure in the learned manifold, while attaining robust fusion of the input features. We demonstrate the representation abilities of our model on benchmark datasets from machine learning and affect analysis. We further evaluate the model on the tasks of feature fusion and joint ordinal prediction of facial action units. Our experiments demonstrate the benefits of the proposed approach compared to the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The subscript r indicates that the process facilitates the recognition model.

  2. 2.

    For simplicity we assume an isotropic (diagonal) covariance across the dimensions.

  3. 3.

    Note that we adopt here a linear model for \(g_c(\cdot )\) as it operates on a low-dimensional non-linear manifold \(\varvec{X}\), already obtained by the GP auto-encoder.

References

  1. Bartlett, M., Whitehill, J.: Automated facial expression measurement: recent applications to basic research in human behavior, learning, and education. In: Handbook of Face Perception. Oxford University Press, USA (2010)

    Google Scholar 

  2. Ekman, P., Friesen, W.V., Hager, J.C.: Facial action coding system. UT: A Human Face, Salt Lake City (2002)

    Google Scholar 

  3. Pantic, M.: Machine analysis of facial behaviour: naturalistic and dynamic behaviour. Philos. Trans. Roy. Soc. B: Biol. Sci. 364, 3505–3513 (2009)

    Article  Google Scholar 

  4. Rudovic, O., Pavlovic, V., Pantic, M.: Context-sensitive dynamic ordinal regression for intensity estimation of facial action units. IEEE TPAMI 37, 944–958 (2015)

    Article  Google Scholar 

  5. Mahoor, M.H., Cadavid, S., Messinger, D.S., Cohn, J.F.: A framework for automated measurement of the intensity of non-posed facial action units. In: IEEE CVPR-W, pp. 74–80 (2009)

    Google Scholar 

  6. Mavadati, S.M., Mahoor, M.H., Bartlett, K., Trinh, P., Cohn, J.F.: DISFA: a spontaneous facial action intensity database. IEEE TAC 4, 151–160 (2013)

    Google Scholar 

  7. Ming, Z., Bugeau, A., Rouas, J.L., Shochi, T.: Facial action units intensity estimation by the fusion of features with multi-kernel support vector machine. In: IEEE FG, vol. 6, pp. 1–6 (2015)

    Google Scholar 

  8. Valstar, M.F., Almaev, T., Girard, J.M., McKeown, G., Mehu, M., Yin, L., Pantic, M., Cohn, J.F.: FERA 2015 - second facial expression recognition and analysis challenge. In: IEEE FG, vol. 6, pp. 1–8 (2015)

    Google Scholar 

  9. Savran, A., Sankur, B., Bilge, M.T.: Regression-based intensity estimation of facial action units. Image Vis. Comput. 30, 774–784 (2012)

    Article  Google Scholar 

  10. Kaltwang, S., Rudovic, O., Pantic, M.: Continuous pain intensity estimation from facial expressions. In: Bebis, G., et al. (eds.) ISVC 2012. LNCS, vol. 7432, pp. 368–377. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33191-6_36

    Chapter  Google Scholar 

  11. Jeni, L.A., Girard, J.M., Cohn, J.F., De La Torre, F.: Continuous AU intensity estimation using localized, sparse facial feature space. In: IEEE FG, pp. 1–7 (2013)

    Google Scholar 

  12. Kaltwang, S., Todorovic, S., Pantic, M.: Doubly sparse relevance vector machine for continuous facial behavior estimation. IEEE TPAMI 38, 1748–1761 (2015)

    Article  Google Scholar 

  13. Li, Y., Mavadati, S.M., Mahoor, M.H., Ji, Q.: A unified probabilistic framework for measuring the intensity of spontaneous facial action units. In: IEEE FG (2013)

    Google Scholar 

  14. Sandbach, G., Zafeiriou, S., Pantic, M.: Markov random field structures for facial action unit intensity estimation. In: IEEE ICCV-W, pp. 738–745 (2013)

    Google Scholar 

  15. Kaltwang, S., Todorovic, S., Pantic, M.: Latent trees for estimating intensity of facial action units. In: IEEE CVPR, pp. 296–304 (2015)

    Google Scholar 

  16. Nicolle, J., Bailly, K., Chetouani, M.: Facial action unit intensity prediction via hard multi-task metric learning for kernel regression. In: IEEE FG, pp. 1–6 (2015)

    Google Scholar 

  17. Mohammadi, M.R., Fatemizadeh, E., Mahoor, M.H.: Intensity estimation of spontaneous facial action units based on their sparsity properties. IEEE TCYB 46, 817–826 (2016)

    Google Scholar 

  18. Damianou, A., Ek, C.H., Titsias, M., Lawrence, N.: Manifold relevance determination. In: ICML, pp. 145–152 (2012)

    Google Scholar 

  19. Urtasun, R., Quattoni, A., Lawrence, N., Darrell, T.: Transferring nonlinear representations using Gaussian processes with a shared latent space. Technical report MIT-CSAIL-TR-08-020 (2008)

    Google Scholar 

  20. Calandra, R., Peters, J., Rasmussen, C.E., Deisenroth, M.P.: Manifold Gaussian processes for regression. In: IJCNN (2016)

    Google Scholar 

  21. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning, vol. 1. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  22. Titsias, M.K., Lawrence, N.D.: Bayesian Gaussian process latent variable model. In: AISTATS, pp. 844–851 (2010)

    Google Scholar 

  23. Dai, Z., Damianou, A., González, J., Lawrence, N.: Variational auto-encoded deep Gaussian processes. In: ICLR (2016)

    Google Scholar 

  24. Agresti, A.: Analysis of Ordinal Categorical Data. Wiley, Hoboken (2010)

    Book  MATH  Google Scholar 

  25. Mahoor, M.H., Zhou, M., Veon, K.L., Mavadati, S.M., Cohn, J.F.: Facial action unit recognition with sparse representation. In: IEEE FG, pp. 336–342 (2011)

    Google Scholar 

  26. Chu, W.S., Torre, F.D.L., Cohn, J.F.: Selective transfer machine for personalized facial action unit detection. In: IEEE CVPR, pp. 3515–3522 (2013)

    Google Scholar 

  27. Zhao, K., Chu, W.S., De la Torre, F., Cohn, J.F., Zhang, H.: Joint patch and multi-label learning for facial action unit detection. In: IEEE CVPR (2015)

    Google Scholar 

  28. Eleftheriadis, S., Rudovic, O., Pantic, M.: Multi-conditional latent variable model for joint facial action unit detection. In: IEEE ICCV, pp. 3792–3800 (2015)

    Google Scholar 

  29. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58, 11 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2013)

    Google Scholar 

  31. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML, pp. 1278–1286 (2014)

    Google Scholar 

  32. Chu, W., Ghahramani, Z.: Gaussian processes for ordinal regression. JMLR 6, 1019–1041 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  34. Lawrence, N.D., Candela, J.Q.: Local distance preservation in the GP-LVM through back constraints. In: ICML, vol. 148, pp. 513–520 (2006)

    Google Scholar 

  35. Lawrence, N.: Probabilistic non-linear principal component analysis with Gaussian process latent variable models. JMLR 6, 1783–1816 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Shon, A., Grochow, K., Hertzmann, A., Rao, R.: Learning shared latent structure for image synthesis and robotic imitation. NIPS 18, 1233–1240 (2006)

    Google Scholar 

  37. Ek, C.H., Torr, P.H.S., Lawrence, N.D.: Gaussian process latent variable models for human pose estimation. In: Popescu-Belis, A., Renals, S., Bourlard, H. (eds.) MLMI 2007. LNCS, vol. 4892, pp. 132–143. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78155-4_12

    Chapter  Google Scholar 

  38. Eleftheriadis, S., Rudovic, O., Pantic, M.: Discriminative shared Gaussian processes for multiview and view-invariant facial expression recognition. IEEE TIP 24, 189–204 (2015)

    MathSciNet  Google Scholar 

  39. Damianou, A., Lawrence, N.: Semi-described and semi-supervised learning with Gaussian processes. In: UAI (2015)

    Google Scholar 

  40. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits (1998)

    Google Scholar 

  41. Zhang, X., Yin, L., Cohn, J.F., Canavan, S., Reale, M., Horowitz, A., Liu, P., Girard, J.M.: BP4D-spontaneous: a high-resolution spontaneous 3D dynamic facial expression database. Image Vis. Comput. 32, 692–706 (2014)

    Article  Google Scholar 

  42. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE TPAMI 24, 971–987 (2002)

    Article  MATH  Google Scholar 

  43. Shrout, P.E., Fleiss, J.L.: Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86, 420 (1979)

    Article  Google Scholar 

  44. Sheth, R., Wang, Y., Khardon, R.: Sparse variational inference for generalized GP models. In: ICML, pp. 1302–1311 (2015)

    Google Scholar 

Download references

Acknowledgement

This work has been funded by the European Community Horizon 2020 under grant agreement No. 645094 (SEWA), and No. 688835 (DE-ENIGMA). MPD has been supported by a Google Faculty Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanos Eleftheriadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Eleftheriadis, S., Rudovic, O., Deisenroth, M.P., Pantic, M. (2017). Variational Gaussian Process Auto-Encoder for Ordinal Prediction of Facial Action Units. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10112. Springer, Cham. https://doi.org/10.1007/978-3-319-54184-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54184-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54183-9

  • Online ISBN: 978-3-319-54184-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics