Abstract
We propose DeepExpr, a novel expression transfer approach from humans to multiple stylized characters. We first train two Convolutional Neural Networks to recognize the expression of humans and stylized characters independently. Then we utilize a transfer learning technique to learn the mapping from humans to characters to create a shared embedding feature space. This embedding also allows human expression-based image retrieval and character expression-based image retrieval. We use our perceptual model to retrieve character expressions corresponding to humans. We evaluate our method on a set of retrieval tasks on our collected stylized character dataset of expressions. We also show that the ranking order predicted by the proposed features is highly correlated with the ranking order provided by a facial expression expert and Mechanical Turk experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Project page: http://grail.cs.washington.edu/projects/deepexpr/.
References
Lasseter, J.: Principles of traditional animation applied to 3D computer animation. SIGGRAPH Comput. Graph. 21, 35–44 (1987)
Porter, T., Susman, G.: On site: creating lifelike characters in pixar movies. Commun. ACM 43, 25 (2000)
Bates, J.: The role of emotion in believable agents. Commun. ACM 37, 122–125 (1994)
Pelachaud, C., Poggi, I.: Subtleties of facial expressions in embodied agents. J. Vis. Comput. Anim. 13, 301–312 (2002)
Amini, R., Lisetti, C.: HapFACS: an open source API/Software to generate FACS-based expressions for ECAs animation and for corpus generation. In: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII), pp. 270–275 (2013)
Buhrmester, M., Kwang, T., Gosling, S.D.: Amazon’s Mechanical Turk: a new source of inexpensive, yet high-quality, data? Perspect. Psychol. Sci. 6, 3–5 (2011)
Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)
Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)
Roesch, E.B., Tamarit, L., Reveret, L., Grandjean, D., Sander, D., Scherer, K.R.: FACSGen: a tool to synthesize emotional facial expressions through systematic manipulation of facial action units. J. Nonverbal Behav. 35, 1–16 (2011)
Sandbach, G., Zafeiriou, S., Pantic, M., Yin, L.: Static and dynamic 3D facial expression recognition: a comprehensive survey. Image Vis. Comput. 30, 683–697 (2012)
Adolphs, R.: Recognizing emotion from facial expressions: psychological and neurological mechanisms. Behav. Cogn. Neurosci. Rev. 1(1), 21–62 (2002)
Pereira, F.C., Ebrahimi, T.: The MPEG-4 Book. Prentice Hall PTR, Upper Saddle River (2002)
Deng, Z., Ma, X.: Perceptually guided expressive facial animation. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2008 Eurographics Association (2008)
Jolliffe, I.: Principal Component Analysis. Wiley, Hoboken (2002)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
Kobayashi, H., Hara, F.: Facial interaction between animated 3D face robot and human beings. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, vol. 4, pp. 3732–3737. IEEE (1997)
Dibeklioglu, H., Salah, A., Gevers, T.: Like father, like son: facial expression dynamics for kinship verification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1497–1504 (2013)
Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27, 803–816 (2009)
Liu, C., Wechsler, H.: Independent component analysis of Gabor features for face recognition. IEEE Trans. Neural Netw. 14, 919–928 (2003)
Whitehill, J., Littlewort, G., Fasel, I., Bartlett, M., Movellan, J.: Toward practical smile detection. IEEE Trans. Pattern Anal. Mach. Intell. 31, 2106–2111 (2009)
Shu, C., Ding, X., Fang, C.: Histogram of the oriented gradient for face recognition. Tsinghua Sci. Technol. 16, 216–224 (2011)
Kenji, M.: Recognition of facial expression from optical flow. IEICE Trans. Inf. Syst. 74, 3474–3483 (1991)
Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29, 915–928 (2007)
Mahoor, M.H., Zhou, M., Veon, K.L., Mavadati, S.M., Cohn, J.F.: Facial action unit recognition with sparse representation. In: 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011), pp. 336–342. IEEE (2011)
Lin, Y., Song, M., Quynh, D.T.P., He, Y., Chen, C.: Sparse coding for flexible, robust 3D facial-expression synthesis. IEEE Comput. Graph. Appl. 32, 76–88 (2012)
Jeni, L.A., Lőrincz, A., Szabó, Z., Cohn, J.F., Kanade, T.: Spatio-temporal event classification using time-series kernel based structured sparsity. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 135–150. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10593-2_10
Tan, X., Triggs, B.: Fusing Gabor and LBP feature sets for kernel-based face recognition. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 235–249. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75690-3_18
Ying, Z.-L., Wang, Z.-W., Huang, M.-W.: Facial expression recognition based on fusion of sparse representation. In: Huang, D.-S., Zhang, X., Reyes García, C.A., Zhang, L. (eds.) ICIC 2010. LNCS (LNAI), vol. 6216, pp. 457–464. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14932-0_57
Mollahosseini, A., Chan, D., Mahoor, M.H.: Going deeper in facial expression recognition using deep neural networks. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE (2016)
Yu, Z., Zhang, C.: Image based static facial expression recognition with multiple deep network learning. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 435–442. ACM (2015)
Yu, X., Yang, J., Luo, L., Li, W., Brandt, J., Metaxas, D.: Customized expression recognition for performance-driven cutout character animation. In: Winter Conference on Computer Vision (2016)
Liu, M., Li, S., Shan, S., Chen, X.: Au-aware deep networks for facial expression recognition. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–6. IEEE (2013)
Jung, H., Lee, S., Yim, J., Park, S., Kim, J.: Joint fine-tuning in deep neural networks for facial expression recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2983–2991 (2015)
Zhong, L., Liu, Q., Yang, P., Liu, B., Huang, J., Metaxas, D.N.: Learning active facial patches for expression analysis. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2562–2569. IEEE (2012)
Dumas, M.: Emotional expression recognition using support vector machines. In: Proceedings of International Conference on Multimodal Interfaces. Citeseer (2001)
Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 94–101. IEEE (2010)
Mavadati, S.M., Mahoor, M.H., Bartlett, K., Trinh, P., Cohn, J.F.: Disfa: a spontaneous facial action intensity database. IEEE Trans. Affect. Comput. 4, 151–160 (2013)
Lundqvist, D., Flykt, A., Öhman, A.: The Karolinska directed emotional faces-KDEF. CD-ROM from department of clinical neuroscience, psychology section, Karolinska Institutet, Stockholm, Sweden. Technical report (1998). ISBN 91-630-7164-9
Pantic, M., Valstar, M., Rademaker, R., Maat, L.: Web-based database for facial expression analysis. In: 2005 IEEE International Conference on Multimedia and Expo, ICME 2005, p. 5. IEEE (2005)
Xiong, X., Torre, F.: Supervised descent method and its applications to face alignment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 532–539 (2013)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM (2014)
Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theor. 37, 145–151 (1991)
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)
Müller, H., Marchand-Maillet, S., Pun, T.: The truth about corel - evaluation in image retrieval. In: Lew, M.S., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, pp. 38–49. Springer, Heidelberg (2002). doi:10.1007/3-540-45479-9_5
Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 15, 72–101 (1904)
Kendall, M.G.: A new measure of rank correlation. Biometrika 30, 81–93 (1938)
Character Animator: Adobe After Effects CC 2016. Adobe Systems Incorporated, San Jose, CA 95110–2704 (2016)
Acknowledgements
We would like to thank Jamie Austad for creating our stylized character database. We would also like to thank the creators of the rigs we used in our project: Mery (www.meryproject.com), Ray (CGTarian Online School), Malcolm (www.animSchool.com), Aia & Jules (www.animationmentor.com), and Bonnie (Josh Sobel Rigs).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Aneja, D., Colburn, A., Faigin, G., Shapiro, L., Mones, B. (2017). Modeling Stylized Character Expressions via Deep Learning. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10112. Springer, Cham. https://doi.org/10.1007/978-3-319-54184-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-54184-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54183-9
Online ISBN: 978-3-319-54184-6
eBook Packages: Computer ScienceComputer Science (R0)