Skip to main content

Radial Lens Distortion Correction Using Convolutional Neural Networks Trained with Synthesized Images

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10113))

Included in the following conference series:

  • 4391 Accesses

Abstract

Radial lens distortion often exists in images taken by common cameras, which violates the assumption of pinhole camera model. Estimating the radial lens distortion of an image is an important preprocessing step for many vision applications. This paper intends to employ CNNs (Convolutional Neural Networks), to achieve radial distortion correction. However, the main issue hinder its progress is the scarcity of training data with radial distortion annotations. Inspired by the growing availability of image dataset with non-radial distortion, we propose a framework to address the issue by synthesizing images with radial distortion for CNNs. We believe that a large number of images of high variation of radial distortion is generated, which can be well exploited by deep CNN with a high learning capacity. We present quantitative results that demonstrate the ability of our technique to estimate the radial distortion with comparisons against several baseline methods, including an automatic method based on Hough transforms of distorted line images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Kuang, Y., Solem, J.E., Kahl, F., Åström, K.: Minimal solvers for relative pose with a single unknown radial distortion. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 33–40. IEEE (2014)

    Google Scholar 

  3. Kukelova, Z., Pajdla, T.: A minimal solution to radial distortion autocalibration. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2410–2422 (2011)

    Article  Google Scholar 

  4. Ying, X., Mei, X., Yang, S., Wang, G., Rong, J., Zha, H.: Imposing differential constraints on radial distortion correction. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 384–398. Springer, Cham (2015). doi:10.1007/978-3-319-16865-4_25

    Google Scholar 

  5. Ying, X., Mei, X., Yang, S., Wang, G., Zha, H.: Radial distortion correction from a single image of a planar calibration pattern using convex optimization. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 3440–3443. IEEE (2014)

    Google Scholar 

  6. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 666–673. IEEE (1999)

    Google Scholar 

  7. Basu, A., Licardie, S.: Alternative models for fish-eye lenses. Pattern Recogn. Lett. 16, 433–441 (1995)

    Article  Google Scholar 

  8. Claus, D., Fitzgibbon, A.W.: A rational function lens distortion model for general cameras. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 213–219. IEEE (2005)

    Google Scholar 

  9. Mei, X., Yang, S., Rong, J., Ying, X., Huang, S., Zha, H.: Radial lens distortion correction using cascaded one-parameter division model. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3615–3619. IEEE (2015)

    Google Scholar 

  10. Ying, X., Hu, Z.: Can we consider central catadioptric cameras and fisheye cameras within a unified imaging model. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 442–455. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24670-1_34

    Chapter  Google Scholar 

  11. Melo, R., Antunes, M., Barreto, J.P., Falcao, G., Goncalves, N.: Unsupervised intrinsic calibration from a single frame using a “plumb-line” approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 537–544 (2013)

    Google Scholar 

  12. Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), vol. 1, pp. 1–125. IEEE (2001)

    Google Scholar 

  13. Devernay, F., Faugeras, O.: Straight lines have to be straight. Mach. Vis. Appl. 13, 14–24 (2001)

    Article  Google Scholar 

  14. Bukhari, F., Dailey, M.N.: Automatic radial distortion estimation from a single image. J. Math. Imaging Vis. 45, 31–45 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hughes, C., Denny, P., Glavin, M., Jones, E.: Equidistant fish-eye calibration and rectification by vanishing point extraction. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2289–2296 (2010)

    Article  Google Scholar 

  16. Rosten, E., Loveland, R.: Camera distortion self-calibration using the plumb-line constraint and minimal hough entropy. Mach. Vis. Appl. 22, 77–85 (2011)

    Article  Google Scholar 

  17. Alemán-Flores, M., Alvarez, L., Gomez, L., Santana-Cedrés, D.: Line detection in images showing significant lens distortion and application to distortion correction. Pattern Recognit. Lett. 36, 261–271 (2014)

    Article  Google Scholar 

  18. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 248–255. IEEE (2009)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  20. Fernandes, L.A., Oliveira, M.M.: Real-time line detection through an improved Hough transform voting scheme. Pattern Recognit. 41, 299–314 (2008)

    Article  MATH  Google Scholar 

  21. Alemán-Flores, M., Alvarez, L., Gomez, L., Santana-Cedrés, D.: Automatic lens distortion correction using one-parameter division models. Image Process. Line 4, 327–343 (2014)

    Article  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arxiv:1409.1556 (2014)

  23. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  24. Juneja, M., Vedaldi, A., Jawahar, C., Zisserman, A.: Blocks that shout: distinctive parts for scene classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 923–930 (2013)

    Google Scholar 

  25. Le, Q.V.: Building high-level features using large scale unsupervised learning. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8595–8598. IEEE (2013)

    Google Scholar 

  26. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3361–3368. IEEE (2011)

    Google Scholar 

  27. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: ICML, pp. 647–655 (2014)

    Google Scholar 

  28. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010)

    Article  Google Scholar 

  29. Aytar, Y., Zisserman, A.: Tabula rasa: model transfer for object category detection. In: 2011 International Conference on Computer Vision, pp. 2252–2259. IEEE (2011)

    Google Scholar 

  30. Tommasi, T., Orabona, F., Caputo, B.: Safety in numbers: learning categories from few examples with multi model knowledge transfer. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3081–3088. IEEE (2010)

    Google Scholar 

  31. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  32. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by State Key Development Program Grand No. 2016YFB1001001, NNSFC Grant No. 61322309, and NNSFC Grant No. 61273283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghua Ying .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rong, J., Huang, S., Shang, Z., Ying, X. (2017). Radial Lens Distortion Correction Using Convolutional Neural Networks Trained with Synthesized Images. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10113. Springer, Cham. https://doi.org/10.1007/978-3-319-54187-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54187-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54186-0

  • Online ISBN: 978-3-319-54187-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics