Abstract
Motion estimation for highly dynamic phenomena such as smoke is an open challenge for Computer Vision. Traditional dense motion estimation algorithms have difficulties with non-rigid and large motions, both of which are frequently observed in smoke motion. We propose an algorithm for dense motion estimation of smoke. Our algorithm is robust, fast, and has better performance over different types of smoke compared to other dense motion estimation algorithms, including state of the art and neural network approaches. The key to our contribution is to use skeletal flow, without explicit point matching, to provide a sparse flow. This sparse flow is upgraded to a dense flow. In this paper we describe our algorithm in greater detail, and provide experimental evidence to support our claims.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gregson, J., Ihrke, I., Thuerey, N., Heidrich, W., et al.: From capture to simulation-connecting forward and inverse problems in fluids. ACM Trans. Graph. 33, 1 (2014)
Okabe, M., Anjyo, K., Onai, R.: Extracting fluid from a video for efficient post-production. In: Proceedings of the Digital Production Symposium, pp. 53–58. ACM (2012)
Ghanem, B., Ahuja, N.: Extracting a fluid dynamic texture and the background from video. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)
Li, C., Pickup, D., Saunders, T., Cosker, D., Marshall, D., Hall, P., Willis, P.: Water surface modeling from a single viewpoint video. IEEE Trans. Vis. Comput. Graph. 19, 1242–1251 (2013)
Lakshmanan, V., Rabin, R., DeBrunner, V.: Multiscale storm identification and forecast. Atmos. Res. 67, 367–380 (2003)
Vila, D.A., Machado, L.A.T., Laurent, H., Velasco, I.: Forecast and tracking the evolution of cloud clusters (ForTraCC) using satellite infrared imagery: methodology and validation. Weather Forecast. 23, 233–245 (2008)
Barbaresco, F., Monnier, B.: Rain clouds tracking with radar image processing based on morphological skeleton matching. In: 2001 International Conference on Image Processing, vol. 1, pp. 830–833, Proceedings. IEEE (2001)
Garcia, D.: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54, 1167–1178 (2010)
Wang, G., Garcia, D., Liu, Y., De Jeu, R., Dolman, A.J.: A three-dimensional gap filling method for large geophysical datasets: application to global satellite soil moisture observations. Environ. Model. Softw. 30, 139–142 (2012)
Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: EpicFlow: edge-preserving interpolation of correspondences for optical flow. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1164–1172 (2015)
Horn, B.K., Schunck, B.G.: Determining optical flow. In: 1981 Technical Symposium East, International Society for Optics and Photonics, pp. 319–331 (1981)
Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3_44
Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 500–513 (2011)
Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63, 75–104 (1996)
Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2432–2439. IEEE (2010)
Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der Smagt, P., Cremers, D., Brox, T.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)
Mémin, E., Pérez, P.: Fluid motion recovery by coupling dense and parametric vector fields. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 620–625. IEEE (1999)
Auroux, D., Fehrenbach, J.: Identification of velocity fields for geophysical fluids from a sequence of images. Exp. Fluids 50, 313–328 (2011)
Corpetti, T., Mémin, E., Pérez, P.: Estimating fluid optical flow. In: 15th International Conference on Pattern Recognition, vol. 3, pp. 1033–1036, Proceedings. IEEE (2000)
Corpetti, T., Mémin, É., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 24, 365–380 (2002)
Corpetti, T., Heitz, D., Arroyo, G., Memin, E., Santa-Cruz, A.: Fluid experimental flow estimation based on an optical-flow scheme. Exp. Fluids 40, 80–97 (2006)
Anumolu, L., Ahmed, I.: Simulation of smoke in OpenFOAM framework (2012)
Li, F., Xu, L., Guyenne, P., Yu, J.: Recovering fluid-type motions using navier-stokes potential flow. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, IEEE 2448–2455(2010)
Doshi, A., Bors, A.G.: Robust processing of optical flow of fluids. IEEE Trans. Image Process. 19, 2332–2344 (2010)
Steinhoff, J., Underhill, D.: Modification of the Euler equations for vorticity confinement: application to the computation of interacting vortex rings. Phys. Fluids 6, 2738–2744 (1994)
Sakaino, H.: Fluid motion estimation method based on physical properties of waves. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)
Ji, Y., Ye, J., Yu, J.: Reconstructing gas flows using light-path approximation. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2507–2514. IEEE (2013)
Xue, T., Rubinstein, M., Wadhwa, N., Levin, A., Durand, F., Freeman, W.T.: Refraction wiggles for measuring fluid depth and velocity from video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 767–782. Springer, Cham (2014). doi:10.1007/978-3-319-10578-9_50
Ding, Y., Li, F., Ji, Y., Yu, J.: Dynamic fluid surface acquisition using a camera array. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2478–2485. IEEE (2011)
Teney, D., Brown, M., Kit, D., Hall, P.: Learning similarity metrics for dynamic scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2084–2093 (2015)
Chen, J., Zhao, G., Salo, M., Rahtu, E., Pietikainen, M.: Automatic dynamic texture segmentation using local descriptors and optical flow. IEEE Trans. Image Process. 22, 326–339 (2013)
Haindl, M., Mikeš, S.: Unsupervised dynamic textures segmentation. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013. LNCS, vol. 8047, pp. 433–440. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40261-6_52
Chan, A.B., Vasconcelos, N.: Variational layered dynamic textures. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1062–1069, CVPR 2009. IEEE (2009)
Strahler, A.N.: Quantitative analysis of watershed geomorphology. EOS Trans. Am. Geophys. Union 38, 913–920 (1957)
Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vis. 13, 119–152 (1994)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)
Strang, G.: The discrete cosine transform. SIAM Rev. 41, 135–147 (1999)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24673-2_3
Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1744–1757 (2012)
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92, 1–31 (2011)
Acknowledgement
The authors are supported by the EPSRC project OAK EP/K02339X/1. We thank the reviewers for constructive comments, and also thank H. Gong for his helpful suggestion and comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Chen, D., Li, W., Hall, P. (2017). Dense Motion Estimation for Smoke. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10114. Springer, Cham. https://doi.org/10.1007/978-3-319-54190-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-54190-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54189-1
Online ISBN: 978-3-319-54190-7
eBook Packages: Computer ScienceComputer Science (R0)