Abstract
This paper shows how to extract dense optical flow from videos with a convolutional neural network (CNN). The proposed model constitutes a potential building block for deeper architectures to allow using motion without resorting to an external algorithm, e.g. for recognition in videos. We derive our network architecture from signal processing principles to provide desired invariances to image contrast, phase and texture. We constrain weights within the network to enforce strict rotation invariance and substantially reduce the number of parameters to learn. We demonstrate end-to-end training on only 8 sequences of the Middlebury dataset, orders of magnitude less than competing CNN-based motion estimation methods, and obtain comparable performance to classical methods on the Middlebury benchmark. Importantly, our method outputs a distributed representation of motion that allows representing multiple, transparent motions, and dynamic textures. Our contributions on network design and rotation invariance offer insights nonspecific to motion estimation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. CoRR NIPS Spotlight Session abs/1406.2199 (2014)
Wu, Z., Wang, X., Jiang, Y.G., Ye, H., Xue, X.: Modeling spatial-temporal clues in a hybrid deep learning framework for video classification. In: ACM Multimedia Conference (2015)
Ye, H., Wu, Z., Zhao, R.W., Wang, X., Jiang, Y.G., Xue, X.: Evaluating two-stream CNN for video classification. In: ACM on International Conference on Multimedia Retrieval (ICMR) (2015)
Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: C3D: generic features for video analysis. CoRR abs/1412.0767 (2014)
Teney, D., Brown, M.: Segmentation of dynamic scenes with distributions of spatiotemporally oriented energies. In: British Machine Vision Conference (BMVC) (2014)
Derpanis, K.G., Wildes, R.P.: Spacetime texture representation and recognition based on a spatiotemporal orientation analysis. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 34, 1193–1205 (2012)
Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. In: International Conference on Computer Vision (ICCV) (2013)
Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 33, 500–513 (2011)
Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., van der Smagt, P., Cremers, D., Brox, T.: Flownet: learning optical flow with convolutional networks. CoRR abs/1504.06852 (2015)
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)
Konda, K.R., Memisevic, R.: Unsupervised learning of depth and motion. CoRR abs/1312.3429 (2013)
Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolutional learning of spatio-temporal features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 140–153. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15567-3_11
Olshausen, B.: Learning sparse, overcomplete representations of time-varying natural images. In: ICIP, vol. 1, pp. I-41 (2003)
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 11, 185–203 (1981)
Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modeling and computation: a survey. Comput. Vis. Image Underst. (CVIU) 393, 1–21 (2015)
Heeger, D.J.: Model for the extraction of image flow. J. Opt. Soc. Am. A 4, 1455–1471 (1987)
Adelson, E.H., Bergen, J.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985)
Rust, N.C., Mante, V., Simoncelli, E.P., Movshon, J.A.: How MT cells analyze the motion of visual patterns. Nature Neurosci. 9, 1421–1431 (2006)
Solari, F., Chessa, M., Medathati, N., Kornprobst, P.: What can we expect from a V1-MT feedforward architecture for optical flow estimation? Signal Process.: Image Commun. 39, 342–354 (2015)
Ulman, V.: Improving accuracy of optical flow of heeger’s original method on biomedical images. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6111, pp. 263–273. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13772-3_27
Derpanis, K.G., Wildes, R.P.: The structure of multiplicative motions in natural imagery. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 32, 1310–1316 (2010)
Teney, D., Brown, M., Kit, D., Hall, P.: Learning similarity metrics for dynamic scene segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Fasel, B., Gatica-Perez, D.: Rotation-invariant neoperceptron. In: International Conference on Pattern Recognition (ICPR) (2006)
Le, Q.V., Ngiam, J., Chen, Z., Chia, D., Koh, P.W., Ng, A.Y.: Tiled convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS) (2010)
Dieleman, S., Willett, K.W., Dambre, J.: Rotation-invariant convolutional neural networks for galaxy morphology prediction. CoRR abs/1503.07077 (2015)
Laptev, D., Buhmann, J.M.: Transformation-invariant convolutional jungles. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Rowley, H., Baluja, S., Kanade, T.: Rotation invariant neural network-based face detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (1998)
Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Advances in Neural Information Processing Systems (NIPS) (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS) (2012)
Jayaraman, D., Grauman, K.: Learning image representations equivariant to ego-motion. CoRR abs/1505.02206 (2015)
Niyogi, S.A.: Fitting models to distributed representations of vision. In: International Joint Conference on Artificial Intelligence, San Francisco, CA, USA, pp. 3–9. Morgan Kaufmann Publishers Inc. (1995)
Fleet, D., Jepson, A.: Computation of component image velocity from local phase information. Int. J. Comput. Vis. (IJCV) 5, 77–104 (1990)
LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35289-8_3
Memin, E., Perez, P.: A multigrid approach for hierarchical motion estimation. In: IEEE Intenational Conference on Computer Vision (ICCV) (1998)
Anonymous: Website to be provided upon acceptance of the paper. http://damienteney.info/cnnFlow.htm
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: International Conference on Computer Vision (ICCV) (2007)
Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3_44
Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2432–2439. IEEE (2010)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24673-2_3
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Teney, D., Hebert, M. (2017). Learning to Extract Motion from Videos in Convolutional Neural Networks. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10115. Springer, Cham. https://doi.org/10.1007/978-3-319-54193-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-54193-8_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54192-1
Online ISBN: 978-3-319-54193-8
eBook Packages: Computer ScienceComputer Science (R0)