Skip to main content

A Characterization of Load Balancing on the IPv6 Internet

  • Conference paper
  • First Online:
Passive and Active Measurement (PAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10176))

Included in the following conference series:

Abstract

As IPv6 deployment grows, it is important to develop new measurement techniques that allow us to study the IPv6 Internet. We implement an IPv6 version of the Multipath Detection Algorithm and use it from 12 geographically-distributed vantage points on two different platforms to characterize IPv6 routers that perform load balancing. Overall, we find that 74% of IPv6 routes traverse at least one router that performs load balancing. Similar to previous reports for IPv4, we find per-destination is the most prevalent type of load balancing; surprisingly, we find a significantly higher prevalence of per-packet load balancing for IPv6 traffic than previously reported for IPv4. We investigate which header fields are used for load balancing, and find that 4% of IPv6 routers that perform load balancing consider IPv6’s Traffic Class or Flow Label fields. Finally, we quantify how often routers modify the Traffic Class and Flow Label IPv6 header fields and their impact on load balancing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code available at https://www.github.com/TopologyMapping/mda6.

  2. 2.

    More precisely, MDA computes the number of probes required to bound the probability of not detecting a next hop, across all load balancers, to \(1 - \alpha \).

  3. 3.

    The usual 5-tuple flow definition used in IPv4 is unsuitable in IPv6 as routers need to follow the variable-length chain of IPv6 extension headers (starting at the next header field) until the end to find the TCP header.

  4. 4.

    Dataset available at http://www.dcc.ufmg.br/~cunha/datasets.

  5. 5.

    Available at http://www.team-cymru.org/IP-ASN-mapping.html.

  6. 6.

    This can happen as a result of traffic engineering or, for example, when a BGP router with ECMP enabled receives and installs multiple routes to a prefix (e.g., at an IXP) or when multiple BGP routers redistribute different routes to the same prefix into an IGP (e.g., OSPF) with ECMP enabled.

References

  1. Augustin, B., Friedman, T., Teixeira, R.: Measuring multipath routing in the internet. IEEE/ACM Trans. Netw. 19(3), 830–840 (2011)

    Article  Google Scholar 

  2. Bayer, D.: Visibility of Prefix Lengths in IPv4 and IPv6 (2010). https://labs.ripe.net/Members/dbayer/visibility-of-prefix-lengths

  3. Beverly, R., Brinkmeyer, W., Luckie, M., Rohrer, J.P.: IPv6 alias resolution via induced fragmentation. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp. 155–165. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36516-4_16

    Chapter  Google Scholar 

  4. Beverly, R., Luckie, M., Mosley, L., Claffy, K.: Measuring and characterizing IPv6 router availability. In: Mirkovic, J., Liu, Y. (eds.) PAM 2015. LNCS, vol. 8995, pp. 123–135. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15509-8_10

    Google Scholar 

  5. Blanton, E., Allman, M.: On making TCP more robust to packet reordering. ACM SIGCOMM Comput. Commun. Rev. 32(1), 20–30 (2002)

    Article  Google Scholar 

  6. Cunha, Í., Teixeira, R., Diot, C.: Measuring and characterizing end-to-end route dynamics in the presence of load balancing. In: Spring, N., Riley, G.F. (eds.) PAM 2011. LNCS, vol. 6579, pp. 235–244. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19260-9_24

    Chapter  Google Scholar 

  7. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Measuring IPv6 adoption. In: Proceedings of SIGCOMM (2014)

    Google Scholar 

  8. Dhamdhere, A., Luckie, M., Huffaker, B., Claffy, K., Elmokashfi, A., Aben, E.: Measuring the deployment of IPv6: topology, routing and performance. In: Proceedings of the ACM Internet Measurement Conference (IMC) (2012)

    Google Scholar 

  9. Gasser, O., Scheitle, Q., Gebhard, S., Carle, G.: Scanning the IPv6 internet: towards a comprehensive hitlist. In: Proceedings of the Traffic Monitoring and Analysis Workshop (TMA) (2016)

    Google Scholar 

  10. Luckie, M., Huffaker, B., Claffy, K., Dhamdhere, A., Giotsas, V.: AS relationships, customer cones, and validation. In: Proceedings of the ACM Internet Measurement Conference (IMC) (2013)

    Google Scholar 

  11. Luckie, M.: Scamper: a scalable and extensible packet prober for active measurement of the internet. In: Proceedings of the ACM Internet Measurement Conference (IMC) (2010)

    Google Scholar 

  12. Luckie, M., Beverly, R., Brinkmeyer, W., Claffy, K.: Speedtrap: internet-scale IPv6 alias resolution. In: Proceedings of the ACM Internet Measurement Conference (IMC) (2013)

    Google Scholar 

  13. Luckie, M., Hyun, Y., Huffaker, B.: Traceroute probe method and forward IP path inference. In: ACM Internet Measurement Conference (IMC) (2008)

    Google Scholar 

  14. Marchetta, P., Montieri, A., Persico, V., Pescape, A., Cunha, I., Katz-Bassett, E.: How and how much traceroute confuses our understanding of network paths. In: Proceedings of the International Symposium on Local and Metropolitan Area Networks (LANMAN) (2016)

    Google Scholar 

  15. Pelsser, C., Cittadini, L., Vissicchio, S., Bush, R.: From paris to tokyo: on the suitability of ping to measure latency. In: Proceedings of the ACM Internet Measurement Conference (IMC) (2013)

    Google Scholar 

  16. Veitch, D., Augustin, B., Friedman, T., Teixeira, R.: Failure control in multipath route tracing. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM) (2009)

    Google Scholar 

  17. Willinger, W., Roughan, M.: Internet topology research redux. In: Recent Advances in Networking, ACM SIGCOMM eBook, vol. 1 (2013)

    Google Scholar 

Download references

Acknowledgements

We thank Young Hyun for the support in setting up and running our measurements on the Ark platform. This work is supported by Comcast and Brazilian research funding agencies (CAPES, CNPq, and FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Almeida, R., Fonseca, O., Fazzion, E., Guedes, D., Meira, W., Cunha, Í. (2017). A Characterization of Load Balancing on the IPv6 Internet. In: Kaafar, M., Uhlig, S., Amann, J. (eds) Passive and Active Measurement. PAM 2017. Lecture Notes in Computer Science(), vol 10176. Springer, Cham. https://doi.org/10.1007/978-3-319-54328-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54328-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54327-7

  • Online ISBN: 978-3-319-54328-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics