Abstract
Image sharpness is key to readability and scene understanding. Because of the inaccessible reference information, blind image sharpness assessment (BISA) is useful and challenging. In this paper, a shallow convolutional neural network (CNN) is proposed for intrinsic representation of image sharpness and general regression neural network (GRNN) is utilized for precise score prediction. The hybrid CNN-GRNN model tends to build functional relationship between retrieved features and subjective human scores by supervised learning. Superior to traditional algorithms based on handcrafted features and machine learning, CNN-GRNN fuses feature extraction and score prediction into an optimization procedure. Experiments on Gaussian blurring images in LIVE, CSIQ, TID2008 and TID2013 show that CNN-GRNN outperforms the state-of-the-art algorithms and gets closer to human subjective judgment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahrami, K., Kot, A.C.: A fast approach for no-reference image sharpness assessment based on maximum local variation. IEEE Sig. Process. Lett. 21(6), 751–755 (2014)
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)
Chandler, D.M.: Seven challenges in image quality assessment: past, present, and future research. ISRN Sig. Process. 2013, 1–53 (2013)
Ciancio, A., Costa, A.D., da Silva, E., Said, A., Samadani, R., Obrador, P.: No-reference blur assessment of digital pictures based on multifeature classifiers. IEEE Trans. Image Process. 21(3), 934–945 (2012)
Ferzli, R., Karam, L.J.: A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Trans. Image Process. 18(4), 717–728 (2009)
Hassen, R., Wang, Z., Salama, M.M.: Image sharpness assessment based on local phase coherence. IEEE Trans. Image Process. 22(7), 2798–2810 (2013)
Hou, W., Gao, X.: Saliency-guided deep framework for image quality assessment. IEEE Multimedia 22(2), 46–55 (2015)
Hou, W., Gao, X., Tao, D., Li, X.: Blind image quality assessment via deep learning. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 46–55 (2015)
Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1733–1740 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 11006 (2010)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
Li, C., Bovik, A.C., Wu, X.: Blind image quality assessment using a general regression neural network. IEEE Trans. Neural Netw. 22(5), 793–799 (2011)
Li, L., Lin, W., Wang, X., Yang, G., Bahrami, K., Kot, A.C.: No-reference image blur assessment based on discrete orthogonal moments. IEEE Trans. Cybern. 46(1), 39–50 (2016)
Li, Y., Po, L., Xu, X., Feng, L., Yuan, F., Cheung, C.H., Cheung, K.W.: No-reference image quality assessment with shearlet transform and deep neural networks. Neurocomputing 154, 94–109 (2015)
Li, L., Wu, D., Wu, J., Li, H., Lin, W., Kot, A.C.: Image sharpness assessment by sparse representation. IEEE Trans. Multimedia 18(6), 1085–1097 (2016)
Lin, W., Kuo, C.: Perceptual visual quality metrics: a survey. J. Vis. Commun. Image Represent. 22(4), 297–312 (2011)
Lv, Q., Jiang, G., Yu, M., Xu, H., Shao, F., Liu, S.: Difference of Gaussian statistical features based blind image quality assessment: a deep learning approach. In: IEEE Conference on Image Processing, pp. 2344–2348 (2015)
Manap, R.A., Shao, L.: Non-distortion-specific no-reference image quality assessment: a survey. Inf. Sci. 301, 141–160 (2015)
Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)
Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely” blind image quality analyzer. IEEE Sig. Process. Lett. 20(3), 209–212 (2013)
Moorthy, A.K., Bovik, A.C.: A two-step framework for constructing blind image quality indices. IEEE Sig. Process. Lett. 17(5), 513–516 (2010)
Narvekar, N.D., Karam, L.J.: A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Trans. Image Process. 20(9), 2678–2683 (2009)
Niu, X., Suen, C.: A novel hybrid CNN-SVM classifier for recognizing handwritten digits. Pattern Recogn. 45(4), 1318–1325 (2012)
Palm, R.B.: Prediction as a candidate for learning deep hierarchical models of data. Technical University of Denmar (2012)
Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Astola, J., Carli, M., Battisti, F.: TID2008 - a database for evaluation of full-reference visual quality assessment metrics. Adv. Mod. Radioelectron. 10(4), 30–45 (2009)
Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V., Egiazarian, K., Astola, J., Vozel, B., Chehdi, K., Carli, M., Battisti, F., Kuo, C.C.J.: Image database TID2013: peculiarities, results and perspectives. Sig. Process. Image Commun. 20, 57–77 (2015)
Russakovsky, O., Deng, J., Su, H., Jonathan, K., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A., Li, F.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Saad, M.A., Bovik, A.C., Christophe, C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)
Sang, Q., Qi, H., Wu, X., Bovic, A.C.: No-reference image blur index based on singular value curve. J. Vis. Commun. Image Represent. 25(7), 1625–1630 (2014)
Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)
Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (1991)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Virtanen, T., Nuutinen, M., Vaahteranoksa, M., Oittinen, P.: CID2013: a database for evaluating no-reference image quality assessment algorithms. IEEE Trans. Image Process. 24(1), 390–402 (2015)
Vu, P.V., Chandler, D.M.: A fast wavelet-based algorithm for global and local image sharpness estimation. IEEE Sig. Process. Lett. 19(7), 423–426 (2012)
Vu, C.T., Phan, T.D., Chandler, D.M.: S3: a spectral and spatial measure of local perceived sharpness in natural images. IEEE Trans. Image Process. 21(3), 934–945 (2012)
Wang, Z., Bovik, A.C.: Reduced- and no-reference image quality assessment. IEEE Sig. Process. Mag. 28(6), 29–40 (2011)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Yu, S., Zhang, W., Wu, S., Li, X., Xie, Y.: Applications of edge preservation ratio in image processing. In: IEEE International Conference on Signal Processing, pp. 698–702 (2014)
Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)
Acknowledgement
The authors would like to thank reviewers for their valuable suggestion that has helped to improve the paper quality. This work is supported from National Natural Science Foundation of China (Grant No. 81501463 and 61379143), Guangdong Innovative Research Team Program (Grant No. 2011S013), National 863 Programs of China (Grant No. 2015AA043203), the Shenzhen Fundamental Research Program (Grant Nos. JCYJ20140417113430726, JCYJ20140417113430665 and JCYJ20150401145529039), the Qing Lan Project of Jiangsu Province and the China Postdoctoral Science Foundation (Grant No. 2016M590827).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Yu, S., Jiang, F., Li, L., Xie, Y. (2017). CNN-GRNN for Image Sharpness Assessment. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-54407-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54406-9
Online ISBN: 978-3-319-54407-6
eBook Packages: Computer ScienceComputer Science (R0)