Skip to main content

An Efficient Meta-Algorithm for Triangulation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10117))

Included in the following conference series:

  • 2068 Accesses

Abstract

Triangulation by \(\ell _\infty \) minimisation has become established in computer vision. State-of-the-art \(\ell _\infty \) triangulation algorithms exploit the quasiconvexity of the cost function to derive iterative update rules that deliver the global minimum. Such algorithms, however, can be computationally costly for large problem instances that contain many image measurements. In this paper, we exploit the fact that \(\ell _\infty \) triangulation is an instance of generalised linear programs (GLP) to speed up the optimisation. Specifically, the solution of GLPs can be obtained as the solution on a small subset of the data called the support set. A meta-algorithm is then constructed to efficiently find the support set of a set of image measurements for triangulation. We demonstrate that, on practical datasets, using the meta-algorithm in conjunction with all existing \(\ell _\infty \) triangulation solvers provides faster convergence than directly executing the triangulation routines on the full set of measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. Discret. Comput. Geom. 52, 1–30 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Agarwal, S., Snavely, N., Seitz, S.: Fast algorithms for \(l_\infty \) problems in multiview geometry. In: CVPR (2008)

    Google Scholar 

  3. Amenta, N.: Helly-type theorems and generalized linear programming. Discret. Comput. Geom. 12, 241–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the dimension is small. J. ACM 42, 488–499 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dai, Z., Wu, Y., Zhang, F., Wang, H.: A novel fast method for \(L_{\infty }\) problems in multiview geometry. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 116–129. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33715-4_9

    Chapter  Google Scholar 

  6. Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13, 492–498 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donné, S., Goossens, B., Philips, W.: Point triangulation through polyhedrom collapse using the \(l_\infty \) norm. In: ICCV (2015)

    Google Scholar 

  8. Enqvist, O., Olsson, C., Kahl, F.: Stable structure from motion using rotational consistency. Technical report (2010)

    Google Scholar 

  9. Eriksson, A., Isaksson, M.: Pseudoconvex proximal splitting for \(l_\infty \) problems in multiview geometry. In: CVPR (2014)

    Google Scholar 

  10. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. IEEE TPAMI 32, 1362–1376 (2010)

    Article  Google Scholar 

  11. Gugat, M.: A fast algorithm for a class of generalized fractional programs. Manag. Sci. 42, 1493–1499 (1996)

    Article  MATH  Google Scholar 

  12. Hartley, R.I., Schaffalitzky, F.: \(l_\infty \) minimization in geometric reconstruction problems. In: CVPR (2004)

    Google Scholar 

  13. Kahl, F.: Multiple view geometry and the \(l_\infty \) norm. In: ICCV (2005)

    Google Scholar 

  14. Ke, Q., Kanade, T.: Quasiconvex optimization for robust geometric reconstruction. In: ICCV (2005)

    Google Scholar 

  15. Li, H.: Efficient reduction of \(l_\infty \) geometry problems. In: CVPR (2009)

    Google Scholar 

  16. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16, 498–516 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mur-Artal, R., Tardós, J.D.: Probabilistic semi-dense mapping from highly accurate feature-based monocular SLAM. In: RSS (2015)

    Google Scholar 

  18. Olsson, C., Enqvist, O.: Stable structure from motion for unordered image collections. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 524–535. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21227-7_49

    Chapter  Google Scholar 

  19. Olsson, C., Eriksson, A., Kahl, F.: Efficient optimization for \(l_\infty \) problems using pseudoconvexity. In: ICCV (2007)

    Google Scholar 

  20. Seidel, R.: Small-dimensional linear programming and convex hulls made easy. Discret. Comput. Geom. 6, 423–434 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Seo, Y., Hartley, R.I.: A fast method to minimize \(l_\infty \) error norm for geometric vision problems. In: ICCV (2007)

    Google Scholar 

  22. Sharir, M., Welzl, E.: A combinatorial bound for linear programming and related problems. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 567–579. Springer, Heidelberg (1992). doi:10.1007/3-540-55210-3_213

    Chapter  Google Scholar 

  23. Sim, K., Hartley, R.: Removing outliers using the \(l_\infty \) norm. In: CVPR (2006)

    Google Scholar 

  24. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. IJCV 80, 189–210 (2007)

    Article  Google Scholar 

  25. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by ARC Grant DP160103490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianggong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, Q., Chin, TJ. (2017). An Efficient Meta-Algorithm for Triangulation. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54427-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54426-7

  • Online ISBN: 978-3-319-54427-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics