Skip to main content

Fast General Norm Approximation via Iteratively Reweighted Least Squares

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10117))

Included in the following conference series:

  • 2077 Accesses

Abstract

This paper describes an efficient method for general norm approximation that appears frequently in various computer vision problems. Such a lot of problems are differently formulated, but frequently require to minimize the sum of weighted norms as the general norm approximation. Therefore we extend Iteratively Reweighted Least Squares (IRLS) that is originally for minimizing single norm. The proposed method accelerates solving the least-square problem in IRLS by warm start that finds the next solution by the previous solution over iterations. Through numerical tests and application to the computer vision problems, we demonstrate that the proposed method solves the general norm approximation efficiently with small errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While it may be still valid even when \(p < 1\), the problem becomes non-convex when \(p < 1\); thus they may be trapped by local minima.

References

  1. Lu, M., Zheng, B., Takamatsu, J., Nishino, K., Ikeuchi, K.: In: 3D Shape Restoration via Matrix Recovery. Springer, Heidelberg (2011)

    Google Scholar 

  2. Futragoon, N., Kitamoto, A., Andaroodi, E., Matini, M.R., Ono, K.: In: 3D Reconstruction of a Collapsed Historical Site from Sparse Set of Photographs and Photogrammetric Map. Springer, Heidelberg (2011)

    Google Scholar 

  3. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Tikhonov, A.N., Arsenin, V.Y.: Solution of Ill-posed Problems. Winston & Sons, Washington (1977). ISBN 0-470-99124-0

    MATH  Google Scholar 

  5. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  7. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53, 217–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gentle, J.E.: In: Matrix Algebra: Theory, Computations, and Applications in Statistics. Springer, New York (2007). ISBN 978-0-387-70872-0

    MATH  Google Scholar 

  9. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daubechies, I., DeVore, R., Fornasier, M., Gunturk, S.: Iteratively re-weighted least squares minimization: proof of faster than linear rate for sparse recovery. In: 42nd Annual Conference on Information Sciences and Systems, pp. 26–29 (2008)

    Google Scholar 

  11. Aftab, K., Hartley, R.: Convergence of iteratively re-weighted least squares to robust m-estimators. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 480–487 (2015)

    Google Scholar 

  12. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lawson, C.L.: Contributions to the theory of linear least maximum approximations. Ph.D. thesis, UCLA (1961)

    Google Scholar 

  14. Rice, J.R., Usow, K.H.: The lawson algorithm and extensions. Math. Comput. 22, 118–127 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45, 600–616 (1997)

    Article  Google Scholar 

  16. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 3869–3872 (2008)

    Google Scholar 

  17. Candès, E.J., Wakin, M.B., Boyd, S.: Enhancing sparsity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wipf, D.P., Nagarajan, S.: Iterative reweighted \(\ell _1\) and \(\ell _2\) methods for finding sparse solutions. J. Sel. Top. Signal Process 4(2), 317–329 (2010)

    Article  Google Scholar 

  19. Burrus, C.S., Barreto, J., Selesnick, I.W.: Iterative reweighted least-squares design of fir filters. IEEE Trans. Signal Process. 42, 2926–2936 (1994)

    Article  Google Scholar 

  20. Levin, A., Fergus, R., Durand, F., Freeman, W.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26, 70 (2007). Proceedings of SIGGRAPH

    Article  Google Scholar 

  21. Joshi, N., Zitnick, L., Szeliski, R., Kriegman, D.: Image deblurring and denoising using color priors. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  22. Wohlberg, B., Rodríguez, P.: An iteratively reweighted norm algorithm for minimization of total variation functionals. IEEE Signal Process. Lett. 14, 948–951 (2007)

    Article  Google Scholar 

  23. Liu, C., Sun, D.: On Bayesian adaptive video super resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36, 346–360 (2014)

    Article  Google Scholar 

  24. Mohan, K., Fazel, M.: Iterative reweighted algorithms for matrix rank minimization. J. Mach. Learn. Represent. 13, 3441–3473 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Chen, C., Huang, J., He, L., Li, H.: Preconditioning for accelerated iteratively reweighted least squares in structured sparsity reconstruction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2713–2720 (2014)

    Google Scholar 

  26. Fornasier, M., Peter, S., Rauhut, H., Worm, S.: Conjugate gradient acceleration of iteratively re-weighted least squares methods. Comput. Optim. Appl. 65, 205–259 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Technical report, Pittsburgh, PA, USA (1994)

    Google Scholar 

  28. Howell, G.W., Baboulin, M.: LU preconditioning for overdetermined sparse least squares problems. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 128–137. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32149-3_13

    Chapter  Google Scholar 

  29. Benbow, S.J.: Solving generalized least-squares problems with LSQR. SIAM J. Matrix Anal. Appl. 21, 166–177 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nolet, G.: Solving Large Linearized Tomographic Problems: Seismic Tomography, Theory and Practice, pp. 227–247. Chapmanand Hall, London (1993)

    Google Scholar 

  31. Bochkanov, S., Bystritsky, V.: ALGLIB. http://www.alglib.net/

  32. Guennebaud, G., Jacob, B., et al.: Eigen v3

    Google Scholar 

  33. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19, 191139–191139 (1980)

    Article  Google Scholar 

  34. Wu, L., Ganesh, A., Shi, B., Matsushita, Y., Wang, Y., Ma, Y.: Robust photometric stereo via low-rank matrix completion and recovery. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp. 703–717. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19318-7_55

    Chapter  Google Scholar 

  35. Ikehata, S., Wipf, D., Matsushita, Y., Aizawa, K.: Robust photometric stereo via low-rank matrix completion and recovery. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  36. Harker, M., O’leary, P.: Regularized reconstruction of a surface from its measured gradient field. J. Math. Imaging Vis. 51, 46–70 (2015)

    Article  MATH  Google Scholar 

  37. Reddy, D., Agrawal, A.K., Chellappa, R.: Enforcing integrability by error correction using l1-minimization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2350–2357 (2009)

    Google Scholar 

  38. Avron, H., Maymounkov, P., Toledo, S.: Blendenpik: supercharging lapack’s least-squares solver. SIAM J. Sci. Comput. 32, 1217–1236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was partly supported by JSPS KAKENHI Grant Numbers JP16H01732 and JP26540085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Samejima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Samejima, M., Matsushita, Y. (2017). Fast General Norm Approximation via Iteratively Reweighted Least Squares. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54427-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54426-7

  • Online ISBN: 978-3-319-54427-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics