Skip to main content

Mathematical Morphology on Irregularly Sampled Signals

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10117))

Included in the following conference series:

Abstract

This paper introduces a new operator that can be used to approximate continuous-domain mathematical morphology on irregularly sampled surfaces. We define a new way of approximating the continuous domain dilation by duplicating and shifting samples according to a flat continuous structuring element. We show that the proposed algorithm can better approximate continuous dilation, and that dilations may be sampled irregularly to achieve a smaller sampling without greatly compromising the accuracy of the result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asplund, T., Luengo Hendriks, C.L., Thurley, M.J., Strand, R.: A new approach to mathematical morphology on one dimensional sampled signals. In: Proceedings of the 23rd ICPR 2016 (2016, to be published)

    Google Scholar 

  2. Breuß, M., Burgeth, B., Weickert, J.: Anisotropic continuous-scale morphology. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 515–522. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72849-8_65

    Chapter  Google Scholar 

  3. Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphology. In: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1992, vol. 3, pp. 125–128. IEEE (1992)

    Google Scholar 

  4. Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphological filtering. IEEE Trans. Signal Process. 42, 3377–3386 (1994)

    Article  Google Scholar 

  5. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9, 532–550 (1987)

    Article  Google Scholar 

  7. Luengo Hendriks, C.L., van Kempen, G.M.P., van Vliet, L.J.: Improving the accuracy of isotropic granulometries. Pattern Recogn. Lett. 28, 865–872 (2007)

    Article  Google Scholar 

  8. Nanoflann: C++ header-only fork of the FLANN library for approximate nearest neighbors. https://github.com/jlblancoc/nanoflann. Accessed 21 June 2016

  9. Nyquist, H.: Certain topics in telegraph transmission theory. Trans. AIEE, 617–644 (1928). Reprinted in: Proc. IEEE 90(2), 280–305 (2002)

    Google Scholar 

  10. Onederra, I., Thurley, M., Catalan, A.: Measuring blast fragmentation at Esperanza mine using high resolution 3D laser scanning. Inst. Mater. Miner. Min. Trans. Sect. A: Mining Technol. 124, 34–46 (2015)

    Google Scholar 

  11. Sapiro, G., Kimmel, R., Shaked, D., Kimia, B.B., Bruckstein, A.M.: Implementing continuous-scale morphology via curve evolution. Pattern Recogn. 26, 1363–1372 (1993)

    Article  Google Scholar 

  12. Schöberl, M., Seller, J., Foessel, S., Kaup, A.: Increasing imaging resolution by covering your sensor. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 1897–1900. IEEE (2011)

    Google Scholar 

  13. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc., Cambridge (1983)

    Google Scholar 

  14. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37, 10–21 (1949). Reprinted in: Proc. IEEE 86(2), 447–457 (1998)

    Google Scholar 

  15. Sutherland, I.E., Hodgman, G.W.: Reentrant polygon clipping. Commun. ACM 17, 32–42 (1974)

    Article  MATH  Google Scholar 

  16. Thurley, M.J.: Three dimensional data analysis for the separation and sizing of rock piles in mining. Ph.D. thesis, Monash University (2002)

    Google Scholar 

  17. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  18. Weiler, K., Atherton, P.: Hidden surface removal using polygon area sorting. In: ACM SIGGRAPH Computer Graphics, vol. 11, pp. 214–222. ACM (1977)

    Google Scholar 

Download references

Acknowledgement

Teo Asplund was funded through grant 2014-5983 from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teo Asplund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Asplund, T., Luengo Hendriks, C.L., Thurley, M.J., Strand, R. (2017). Mathematical Morphology on Irregularly Sampled Signals. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54427-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54426-7

  • Online ISBN: 978-3-319-54427-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics