Skip to main content

Binary Pattern Dictionary Learning for Gene Expression Representation in Drosophila Imaginal Discs

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10117))

Included in the following conference series:

Abstract

We present an image processing pipeline which accepts a large number of images, containing spatial expression information for thousands of genes in Drosophila imaginal discs. We assume that the gene activations are binary and can be expressed as a union of a small set of non-overlapping spatial patterns, yielding a compact representation of the spatial activation of each gene. This lends itself well to further automatic analysis, with the hope of discovering new biological relationships. Traditionally, the images were labeled manually, which was very time consuming. The key part of our work is a binary pattern dictionary learning algorithm, that takes a set of binary images and determines a set of patterns, which can be used to represent the input images with a small error. We also describe the preprocessing phase, where input images are segmented to recover the activation images and spatially aligned to a common reference. We compare binary pattern dictionary learning to existing alternative methods on synthetic data and also show results of the algorithm on real microscopy images of the Drosophila imaginal discs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl.

  2. 2.

    http://scikit-learn.org/stable/.

  3. 3.

    https://en.wikipedia.org/wiki/Rand_index.

References

  1. Medzhitov, R., Preston-Hurlburt, P., Janeway Jr., C.A.: A human homologue ofthe Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997)

    Article  Google Scholar 

  2. Tomancak, P., Berman, B.P., Beaton, A., Weiszmann, R., Kwan, E., Hartenstein, V., Celniker, S.E., Rubin, G.M.: Global analysis of patterns of gene expression during Drosophila embryogenesis. Genome Biol. 8, R145 (2007)

    Article  Google Scholar 

  3. Hammonds, A.A.S., Bristow, C.A., Fisher, W.W., Weiszmann, R., Wu, S., Hartenstein, V., Kellis, M., Yu, B., Frise, E., Celniker, S.E.: Spatial expression of transcription factors in Drosophila embryonic organ development. Genome Biol. 14, R140 (2013)

    Article  Google Scholar 

  4. Brower, D.L.: Engrailed gene expression in Drosophila imaginal discs. EMBO J. 5, 2649–2656 (1986)

    Google Scholar 

  5. Ahammad, P., Harmon, C.L., Hammonds, A., Sastry, S.S., Rubin, G.M.: Joint nonparametric alignment for analizing spatial gene expression patterns in Drosophila imaginal discs. In: Proceedings of CVPR (2005)

    Google Scholar 

  6. Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: a survey. IEEE Trans. Knowl. Data Eng. 16, 1370–1386 (2004)

    Article  Google Scholar 

  7. Kim, J., Kim, K., Kim, J.H.: Semantic signature: comparative interpretation of gene expression on a semantic space. Comput. Math. Methods Med. 2016, 1–10 (2016)

    Google Scholar 

  8. Klema, J., Malinka, F., Zelezny, F.: Semantic biclustering: a new way to analyze and interpret gene expression data. In: Bourgeois, A., Skums, P., Wan, X., Zelikovsky, A. (eds.) Bioinformatics Research and Applications, pp. 332–333. Springer, Heidelberg (2016)

    Google Scholar 

  9. Tweedie, S., Ashburner, M., Falls, K., Leyland, P., McQuilton, P., et al.: FlyBase: enhancing Drosophila gene ontology annotations. Nucleic Acids Res. 37, 555–559 (2009)

    Article  Google Scholar 

  10. Tomancak, P., Beaton, A., Weiszmann, R., Kwan, E., Shu, S., Lewis, S.E., Richards, S., Ashburner, M., Hartenstein, V., Celniker, S.E., Rubin, G.M.: Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol. 3 (2002). RESEARCH0088, https://genomebiology.biomedcentral.com/articles/10.1186/gb-2002-3-12-research0088

  11. Pruteanu-Malinici, I., Mace, D.L., Ohler, U.: Automatic annotation of spatial expression patterns via sparse Bayesian factor models. PLOS Comput. Biol. 7, e1002098 (2011)

    Article  Google Scholar 

  12. Wu, S., Joseph, A., Hammonds, A.S., Celniker, S.E., Yu, B., Frise, E.: Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks. Proc. Natl. Acad. Sci. 113, 201521171 (2016)

    Google Scholar 

  13. Zou, H., Hastie, T., Tibshirani, R., Johnstone, I., Lu, A.: Sparse principal component analysis. J. Comput. Graph. Stat. 15, 1–29 (2006)

    Article  MathSciNet  Google Scholar 

  14. Hyvarinen, A.: Fast and robust fixed-point algorithm for independent component analysis. IEEE Trans. Neural Netw. 10, 626–634 (1999)

    Article  Google Scholar 

  15. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 1–8 (2009)

    Google Scholar 

  16. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19, 2756–2779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. Syst. Sci. 76, 3–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, Z.Y., Li, T., Ding, C., Ren, X.W., Zhang, X.S.: Binary matrix factorization for analyzing gene expression data. Data Mining Knowl. Discov. 20, 28–52 (2010)

    Article  MathSciNet  Google Scholar 

  19. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression, vol. 159. Kluwer Academic Press, Dordrecht (1992). 760

    Book  MATH  Google Scholar 

  20. Borovec, J.: Fully automatic segmentation of stained histological cuts. In: Husník, L. (ed.) 17th International Student Conference on Electrical Engineering, pp. 1–7. CTU in Prague, Prague (2013)

    Google Scholar 

  21. Achanta, R., Shaji, A.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)

    Article  Google Scholar 

  22. Boykov, Y., Veksler, O.: Fast approximate energy minimization via graph cuts. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  23. Kybic, J., Dolejsi, M., Borovec, J.: Fast registration of segmented images by normal sampling. In: Bio Image Computing (BIC) Workshop at CVPR, pp. 11–19 (2015)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Czech Science Foundation project 14-21421S and by the Grant Agency of the Czech Technical University in Prague under the grant SGS15/154/OHK3/2T/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Borovec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Borovec, J., Kybic, J. (2017). Binary Pattern Dictionary Learning for Gene Expression Representation in Drosophila Imaginal Discs. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54427-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54426-7

  • Online ISBN: 978-3-319-54427-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics