Skip to main content

Vehicle Detection in Hsuehshan Tunnel Using Background Subtraction and Deep Belief Network

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10192))

Included in the following conference series:

  • 2380 Accesses

Abstract

This paper proposes a method to detect vehicle in the Hsuehshan Tunnel. Vehicle detection in the Tunnel is a challenging problem due to use of heterogeneous cameras, varied camera setup locations, low resolution videos, poor tunnel illumination, and reflected lights on the tunnel wall. Furthermore, the vehicles to be detected vary greatly in shape, color, size, and appearance. The proposed method is based on background subtraction and Deep Belief Network (DBN) with three hidden layers architecture. Experimental results show that it can detect vehicles in he Tunnel effectively. The experimental accuracy rate is 96.59%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsai, C.M., Hsieh, J.W., Shih, F.Y.: Motion-based vehicle detection in Hsuehshan Tunnel. In: 8th International Conference on Advanced Computational Intelligence, Chiang Mai, Thailand, pp. 385–389 (2016)

    Google Scholar 

  2. Wu, B.F., Kao, C.C., Liu, C.C., Fan, C.J., Chen, C.J.: The vision-based vehicle detection and incident detection system in Hsuehshan Tunnel. In: 2008 IEEE International Symposium on Industrial Electronics, pp. 1394–1399 (2008)

    Google Scholar 

  3. Hsuehshan Tunnel. https://en.wikipedia.org/wiki/Hsuehshan_Tunnel

  4. Hsuehshan Tunnel accidents. https://commons.wikimedia.org/wiki/Category:Hsuehshan_tunnel_accidents

  5. Pflugfelder, R., Bischof, H., Fernandez Dominguez, G., Nolle, M., Schwabach, H.: Influence of camera properties on image analysis in visual tunnel surveillance. In: Proceedings of 8th International Conference on Intelligent Transportation Systems (ITSC), ITSS, pp. 868–873. IEEE Computer Society (2005)

    Google Scholar 

  6. Schwabach, H., Harrer, M., Holzmann, W., Bischof, H., Fernandez Dominguez, G., Nolle, M., Pflugfelder, R., Strobl, B., Tacke, A., Waltl, A.: Video based image analysis for tunnel safety – VITUS-1: a tunnel video surveillance and traffic control system. In: 12th World Congress on Intelligent Transport Systems, pp. 1–12 (2005)

    Google Scholar 

  7. Frías-Velázquez, A., NiñoCastañeda, J.O., Jelač, V., Pižurica, A., Philips, W.: A mathematical morphology based approach for vehicle detection in road tunnels. In: Proceedings of SPIE, vol. 8135, id. 81351V (2011)

    Google Scholar 

  8. Rios Cabrera, R., Tuytelaars, T., Van Gool, L.: Efficient multi-camera vehicle detection, tracking, and identification in a tunnel surveillance application. Comput. Vis. Image Underst. 116(6), 742–753 (2012)

    Article  Google Scholar 

  9. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: International Conference on Computer Vision, pp. 255–261 (1999)

    Google Scholar 

  10. Tsai, C.-M., Yeh, Z.-M.: Intelligent moving objects detection via adaptive frame differencing method. In: Selamat, A., Nguyen, N.T., Haron, H. (eds.) ACIIDS 2013. LNCS (LNAI), vol. 7802, pp. 1–11. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36546-1_1

    Chapter  Google Scholar 

  11. Sobral, A., Vacavant, A.: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput. Vis. Image Underst. 122, 4–21 (2014)

    Article  Google Scholar 

  12. Sobral, A.: BGSLibrary: an OpenCV C++ background subtraction library. In: IX Workshop de Visao Computacional, Rio de Janeiro, Brazil (2013). http://code.google.com/p/bgslibrary/

  13. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)

    Article  Google Scholar 

  14. Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: European Workshop on Advanced Video Based Surveillance Systems (AVSS), pp. 1–5 (2001)

    Google Scholar 

  15. Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 38–43 (2012)

    Google Scholar 

  16. Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)

    Article  MathSciNet  Google Scholar 

  17. Xu, Y., Dong, J., Zhang, B., Xu, D.: Background modeling methods in video analysis: a review and comparative evaluation. CAAI Trans. Intell. Technol. 1(1), 43–60 (2016)

    Article  Google Scholar 

  18. St-Charles, P.L., Bilodeau, G.L., Bergevin, R.: Universal background subtraction using world consensus models. IEEE Trans. Image Process. 25(10), 4768–4781 (2016)

    Article  MathSciNet  Google Scholar 

  19. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of 17th International Conference on Pattern Recognition, vol. 2, pp. 28–31 (2004)

    Google Scholar 

  20. Barnich, O., Droogenbroeck, M.V.: ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011)

    Article  MathSciNet  Google Scholar 

  21. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nair V., Hinton, G.E.: 3D object recognition with deep belief nets. In: Proceedings of 23rd Annual Conference on Neural Information Processing Systems (NIPS 2009), pp. 1339–1347 (2009)

    Google Scholar 

  23. Wu, Y.Y., Tsai, C.M.: Pedestrian, bike, motorcycle, and vehicle classification via deep learning: deep belief network and small training set. In: 2016 International Conference on Applied System Innovation (ICASI 2016), Okinawa, Japan, pp. 1–4 (2016)

    Google Scholar 

  24. Wang, H., Cai, Y., Chen, L.: A vehicle detection algorithm based on deep belief network. Sci. World J. 2014, 1–7 (2014)

    Google Scholar 

  25. Sugomori, Y.: Java Deep Learning Essentials. Packt Publishing, May 2016. https://www.packtpub.com/big-data-and-business-intelligence/java-deep-learning-essentials

Download references

Acknowledgements

The authors would like to express his gratitude to Walter Slocombe and Dr. Jeffrey Lee, who assisted editing the English language for this article. This work was supported by the Ministry of Science and Technology, R.O.C., under Grants MOST 104-2221-E-845-003-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ming Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Huang, BJ., Hsieh, JW., Tsai, CM. (2017). Vehicle Detection in Hsuehshan Tunnel Using Background Subtraction and Deep Belief Network. In: Nguyen, N., Tojo, S., Nguyen, L., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2017. Lecture Notes in Computer Science(), vol 10192. Springer, Cham. https://doi.org/10.1007/978-3-319-54430-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54430-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54429-8

  • Online ISBN: 978-3-319-54430-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics