Skip to main content

Complex Networks in the Epidemic Modelling

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10191))

Included in the following conference series:

Abstract

The spread of infectious diseases is analyzed in the paper using social networks. Study of this phenomenon is very important due to the safety of all of us. After the analysis of properties of generated networks using known algorithms a novel method for generating scale-free complex networks was proposed. Features of the epidemic course were studied using computer experiments. The proposed method was compared with three known strategies in terms of influence of vaccination strategies on the tempo and mode of epidemic spread and the number of infected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, Q., Lou, Y.: Local immunization program for susceptible-infected-recovered network epidemic model. Chaos 26(2), 1054–1500 (2016)

    Article  MathSciNet  Google Scholar 

  2. Feld, S.L.: Why your friends have more friends than you do. Am. J. Sociol. 6, 1464–1477 (1991)

    Article  Google Scholar 

  3. Christakis, N.A., Fowler, J.H.: Social network sensors for early detection of contagious outbreaks. PLoS One 5(9): e12948, 1–8 (2010)

    Google Scholar 

  4. Shao, H., et al.: Forecasting the Flu: designing social network sensors for epidemics. CoRR. abs/1602.06866 (2016)

    Google Scholar 

  5. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 115(772), 700–721 (1927)

    Article  MATH  Google Scholar 

  6. Xun, C.H., Minaya, V.: An extension of the Kermack-McKendrick model for AIDS epidemic. J. Franklin Inst. 342(4), 341–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungary. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  8. Xiao, F.W., Guanrong, C.: Complex networks: small-world, scale-free and beyond. IEEE Circuits and Syst. Mag. 3(1), 6–20 (2003)

    Article  Google Scholar 

  9. Watts, D.J., Strogatz, S.H.: Nature (6684), 440–442 (1998)

    Google Scholar 

  10. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wertheim, J.O., et al.: Using HIV transmission networks to investigate community effects in HIV prevention trials. PLOS ONE 6(11), 1–7 (2011)

    Article  Google Scholar 

  12. Pellis, L., et al.: Eight challenges for network epidemic models. Epidemics 10, 58–62 (2015)

    Article  Google Scholar 

  13. Li, T., Wang, Y., Guan, Z.-H.: Spreading dynamics of a SIQRS epidemic model on scale-free networks. Commun. Nonlinear Sci. Numer. Simul. 19, 686–692 (2014)

    Article  MathSciNet  Google Scholar 

  14. Yang, L.-X., et al.: Epidemics of computer viruses: a complex-network approach. Appl. Math. Comput. 219(16), 8705–8717 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Yang, L.-X., Yang, X.: The spread of computer viruses over a reduced scale-free network. Physica A 396, 173–184 (2014)

    Article  MathSciNet  Google Scholar 

  16. Rizzo, A., Pedalino, B., Porfiri, M.: A network model for Ebola spreading. J. Theor. Biol. 394, 212–222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pastor-Satorras, R., et al.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925–979 (2015)

    Article  MathSciNet  Google Scholar 

  18. Robert, C.P.: Simulation of truncated normal variables. Stat. Comput. 5(2), 121–125 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halina Kwasnicka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Biegus, T., Kwasnicka, H. (2017). Complex Networks in the Epidemic Modelling. In: Nguyen, N., Tojo, S., Nguyen, L., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2017. Lecture Notes in Computer Science(), vol 10191. Springer, Cham. https://doi.org/10.1007/978-3-319-54472-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54472-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54471-7

  • Online ISBN: 978-3-319-54472-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics