Skip to main content

Representation Learning, Scene Understanding, and Feature Fusion for Drowsiness Detection

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10118))

Included in the following conference series:

  • 3708 Accesses

Abstract

We propose a novel drowsiness detection method based on 3D-Deep Convolutional Neural Network (3D-DCNN). We design a learning architecture for the drowsiness detection, which consists of three building blocks for representation learning, scene understanding, and feature fusion. In this framework, the model generates a spatio-temporal representation from multiple consecutive frames and analyze the scene conditions which are defined as head, eye, and mouth movements. The result of analysis from the scene condition understanding model is used to auxiliary information for the drowsiness detection. Then the method subsequently generates fusion features using the spatio-temporal representation and the results of the classification of scene conditions. By using the fusion features, we show that the proposed method can boost the performance of drowsiness detection. The proposed method demonstrates with the NTHU Drowsy Driver Detection (NTHU-DDD) video dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schroeder, P., Meyers, M., Kostyniuk, L.: National survey on distracted driving attitudes and behaviors–2012. Technical report (2013)

    Google Scholar 

  2. Khushaba, R.N., Kodagoda, S., Lal, S., Dissanayake, G.: Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans. Biomed. Eng. 58, 121–131 (2011)

    Article  Google Scholar 

  3. Patel, M., Lal, S., Kavanagh, D., Rossiter, P.: Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert Syst. Appl. 38, 7235–7242 (2011)

    Article  Google Scholar 

  4. Tran, Y., Craig, A., Wijesuriya, N., Nguyen, H.: Improving classification rates for use in fatigue countermeasure devices using brain activity. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 4460–4463. IEEE (2010)

    Google Scholar 

  5. Papadelis, C., Chen, Z., Kourtidou-Papadeli, C., Bamidis, P.D., Chouvarda, I., Bekiaris, E., Maglaveras, N.: Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents. Clin. Neurophysiol. 118, 1906–1922 (2007)

    Article  Google Scholar 

  6. Ersal, T., Fuller, H.J., Tsimhoni, O., Stein, J.L., Fathy, H.K.: Model-based analysis and classification of driver distraction under secondary tasks. IEEE Trans. Intell. Transp. Syst. 11, 692–701 (2010)

    Article  Google Scholar 

  7. Yang, J.H., Mao, Z.H., Tijerina, L., Pilutti, T., Coughlin, J.F., Feron, E.: Detection of driver fatigue caused by sleep deprivation. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 39, 694–705 (2009)

    Article  Google Scholar 

  8. Liu, C.C., Hosking, S.G., Lenné, M.G.: Predicting driver drowsiness using vehicle measures: recent insights and future challenges. J. Saf. Res. 40, 239–245 (2009)

    Article  Google Scholar 

  9. Takei, Y., Furukawa, Y.: Estimate of driver’s fatigue through steering motion. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1765–1770. IEEE (2005)

    Google Scholar 

  10. Wakita, T., Ozawa, K., Miyajima, C., Igarashi, K., Katunobu, I., Takeda, K., Itakura, F.: Driver identification using driving behavior signals. IEICE Trans. Inf. Syst. 89, 1188–1194 (2006)

    Article  Google Scholar 

  11. Garcia, I., Bronte, S., Bergasa, L.M., Almazán, J., Yebes, J.: Vision-based drowsiness detector for real driving conditions. In: 2012 IEEE Intelligent Vehicles Symposium (IV), pp. 618–623. IEEE (2012)

    Google Scholar 

  12. Mbouna, R.O., Kong, S.G., Chun, M.G.: Visual analysis of eye state and head pose for driver alertness monitoring. IEEE Trans. Intell. Transp. Syst. 14, 1462–1469 (2013)

    Article  Google Scholar 

  13. Wang, P., Shen, L.: A method of detecting driver drowsiness state based on multifeatures of face. In: 2012 5th International Congress on Image and Signal Processing (CISP), pp. 1171–1175. IEEE (2012)

    Google Scholar 

  14. Minkov, K., Zafeiriou, S., Pantic, M.: A comparison of different features for automatic eye blinking detection with an application to analysis of deceptive behavior. In: 2012 5th International Symposium on Communications Control and Signal Processing (ISCCSP), pp. 1–4. IEEE (2012)

    Google Scholar 

  15. Panning, A., Al-Hamadi, A., Michaelis, B.: A color based approach for eye blink detection in image sequences. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 40–45. IEEE (2011)

    Google Scholar 

  16. Kurylyak, Y., Lamonaca, F., Mirabelli, G.: Detection of the eye blinks for human’s fatigue monitoring. In: 2012 IEEE International Symposium on Medical Measurements and Applications Proceedings (MeMeA), pp. 1–4. IEEE (2012)

    Google Scholar 

  17. Suzuki, M., Yamamoto, N., Yamamoto, O., Nakano, T., Yamamoto, S.: Measurement of driver’s consciousness by image processing-a method for presuming driver’s drowsiness by eye-blinks coping with individual differences. In: 2006 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 2891–2896. IEEE (2006)

    Google Scholar 

  18. Dwivedi, K., Biswaranjan, K., Sethi, A.: Drowsy driver detection using representation learning. In: 2014 IEEE International Advance Computing Conference (IACC), pp. 995–999. IEEE (2014)

    Google Scholar 

  19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  20. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38, 142–158 (2016)

    Article  Google Scholar 

  21. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1110–1118 (2015)

    Google Scholar 

  22. Qi, X., Li, C.G., Zhao, G., Hong, X., Pietikainen, M.: Dynamic texture and scene classification by transferring deep image features. Neurocomputing 171, 1230–1241 (2016)

    Article  Google Scholar 

  23. Xu, D., Ricci, E., Yan, Y., Song, J., Sebe, N.: Learning deep representations of appearance and motion for anomalous event detection. arXiv preprint arXiv:1510.01553 (2015)

  24. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4489–4497. IEEE (2015)

    Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  26. Le Cun, B.B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems. Citeseer (1990)

    Google Scholar 

  27. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R.S., Bengio, Y.: Show, attend and tell: neural image caption generation with visual attention. arXiv preprint arXiv:1502.03044, 2, 5 (2015)

  28. Memisevic, R.: Learning to relate images. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1829–1846 (2013)

    Article  Google Scholar 

  29. Hong, S., Oh, J., Han, B., Lee, H.: Learning transferrable knowledge for semantic segmentation with deep convolutional neural network. arXiv preprint arXiv:1512.07928 (2015)

  30. Farfade, S.S., Saberian, M.J., Li, L.J.: Multi-view face detection using deep convolutional neural networks. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp. 643–650. ACM (2015)

    Google Scholar 

Download references

Acknowledgment

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. B0101-15-0525, Development of global multi-target tracking and event prediction techniques based on real-time large-scale video analysis) and Center for Integrated Smart Sensors as Global Frontier (CISS-2013M3A6A6073718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moongu Jeon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yu, J., Park, S., Lee, S., Jeon, M. (2017). Representation Learning, Scene Understanding, and Feature Fusion for Drowsiness Detection. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10118. Springer, Cham. https://doi.org/10.1007/978-3-319-54526-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54526-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54525-7

  • Online ISBN: 978-3-319-54526-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics