Skip to main content

Unsupervised Person Re-identification via Graph-Structured Image Matching

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10118))

Included in the following conference series:

  • 3386 Accesses

Abstract

This paper presents a novel unsupervised framework to solve both person re-identification and partial person re-identification problems. For each pedestrian image, we first use an established image segmentation method to generate superpixels to construct an Attributed Region Adjacency Graph (ARAG) in which nodes corresponding with superpixels and edges representing correlations between superpixels. We then apply region-based Normalized Cut to the graph to merge similar neighbouring superpixels to form natural image regions corresponding to various body parts and backgrounds. To tackle the occlusion problem often encountered in these applications, we apply Denoising Autoencoder with nonnegativity constrains to learn robust and part-based representation of image patches in each node of the graph. Finally, the similarity of an image pair is measured by the Earth Mover’s Distance (EMD) between the robust image signatures of the nodes in the corresponding ARAGs. We evaluate our methods on both person re-id and partial person re-id datasets and the results show that our new framework outperforms state of the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zheng, W.S., Li, X., Xiang, T., Liao, S., Lai, J., Gong, S.: Partial person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4678–4686 (2015)

    Google Scholar 

  2. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99–121 (2000)

    Article  MATH  Google Scholar 

  3. Zheng, W.S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 649–656. IEEE (2011)

    Google Scholar 

  4. Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88682-2_21

    Chapter  Google Scholar 

  5. Li, W., Zhao, R., Wang, X.: Human reidentification with transferred metric learning. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 31–44. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37331-2_3

    Chapter  Google Scholar 

  6. Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: deep filter pairing neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 152–159 (2014)

    Google Scholar 

  7. Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3908–3916 (2015)

    Google Scholar 

  8. Wang, H., Gong, S., Xiang, T.: Unsupervised learning of generative topic saliency for person re-identification (2014)

    Google Scholar 

  9. Liu, C., Gong, S., Loy, C.C.: On-the-fly feature importance mining for person re-identification. Pattern Recogn. 47, 1602–1615 (2014)

    Article  Google Scholar 

  10. Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2360–2367. IEEE (2010)

    Google Scholar 

  11. Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3586–3593 (2013)

    Google Scholar 

  12. Kodirov, E., Xiang, T., Gong, S.: Dictionary learning with iterative laplacian regularisation for unsupervised person re-identification. In: BMVC 2015, vol. 3, p. 8, September 2015

    Google Scholar 

  13. Lisanti, G., Masi, I., Bagdanov, A.D., Del Bimbo, A.: Person re-identification by iterative re-weighted sparse ranking. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1629–1642 (2015)

    Article  Google Scholar 

  14. Peng, P., Xiang, T., Wang, Y., Pontil, M., Gong, S., Huang, T., Tian, Y.: Unsupervised cross-dataset transfer learning for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016, pp. 1306–1315 (2016)

    Google Scholar 

  15. Chang, Y.C., Chiang, C.K., Lai, S.H.: Single-shot person re-identification based on improved random-walk pedestrian segmentation. In: 2012 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), pp. 1–6. IEEE (2012)

    Google Scholar 

  16. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88693-8_52

    Chapter  Google Scholar 

  17. Boltz, S., Nielsen, F., Soatto, S.: Earth mover distance on superpixels. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 4597–4600. IEEE (2010)

    Google Scholar 

  18. Ling, H., Okada, K.: An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans. Pattern Anal. Mach. Intell. 29, 840–853 (2007)

    Article  Google Scholar 

  19. Shen, Y., Lin, W., Yan, J., Xu, M., Wu, J., Wang, J.: Person re-identification with correspondence structure learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3200–3208 (2015)

    Google Scholar 

  20. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1101–1113 (1993)

    Article  Google Scholar 

  21. Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 975–982. IEEE (1999)

    Google Scholar 

  22. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  23. Ngo, C.W., Ma, Y.F., Zhang, H.J.: Video summarization and scene detection by graph modeling. IEEE Trans. Circuits Syst. Video Technol. 15, 296–305 (2005)

    Article  Google Scholar 

  24. Costeira, J., Kanade, T.: A multi-body factorization method for motion analysis. In: Giralt, G., Hirzinger, G. (eds.) Robotics Research, pp. 368–377. Springer, London (1996)

    Chapter  Google Scholar 

  25. Sarkar, S., Soundararajan, P.: Supervised learning of large perceptual organization: graph spectral partitioning and learning automata. IEEE Trans. Pattern Anal. Mach. Intell. 22, 504–525 (2000)

    Article  Google Scholar 

  26. Tao, W., Jin, H., Zhang, Y.: Color image segmentation based on mean shift and normalized cuts. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 37, 1382–1389 (2007)

    Article  Google Scholar 

  27. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  28. Chorowski, J., Zurada, J.M.: Learning understandable neural networks with nonnegative weight constraints. IEEE Trans. Neural Netw. Learn. Syst. 26, 62–69 (2015)

    Article  MathSciNet  Google Scholar 

  29. Hosseini-Asl, E., Zurada, J.M., Nasraoui, O.: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints. IEEE Trans. Neural Netw. Learn. Syst. 27(12), 2486–2498 (2016)

    Article  Google Scholar 

  30. Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. J. Math. Phys. 20, 224–230 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, W., Wang, X.: Locally aligned feature transforms across views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3594–3601 (2013)

    Google Scholar 

  32. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

  33. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: Proceedings of the 24th international conference on Machine learning, pp. 209–216. ACM (2007)

    Google Scholar 

  34. Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition, and tracking. In: Proceedings of the IEEE International Workshop on Performance Evaluation for Tracking and Surveillance (PETS), vol. 3, no. 5, October 2007

    Google Scholar 

Download references

Acknowledgments

This work is supported by Ningbo Science and Technology Bureau (Project No. 2012B10055 and 2013D10008) and by the International Doctoral Innovation Centre (IDIC) at the University of Nottingham Ningbo China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bolei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xu, B., Qiu, G. (2017). Unsupervised Person Re-identification via Graph-Structured Image Matching. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10118. Springer, Cham. https://doi.org/10.1007/978-3-319-54526-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54526-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54525-7

  • Online ISBN: 978-3-319-54526-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics