Skip to main content

A Novel Iterative Method for Airway Tree Segmentation from CT Imaging Using Multiscale Leakage Detection

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10118))

Included in the following conference series:

  • 3089 Accesses

Abstract

Computed tomography (CT)-based metrics of airway phenotypes, wall-thickness, and other morphological features are increasingly being used in large multi-center lung studies involving many hundreds or thousands of image datasets. There is an unmet need for a fully reliable, automated algorithm for CT-based segmentation of airways. State-of-the-art methods require a post-editing step, which is time consuming when several thousands of image data sets need to be reviewed and edited. In this paper, we present a novel iterative algorithm for CT-based segmentation of airway trees. Early testing suggests that the method requires no editing to extract a set of airway segments along a standardized set of bronchial paths extending two generations beyond the segmental airways. It uses simple intensity-based connectivity and new leakage detection and volume freezing algorithms to iteratively grow an airway tree. It starts with an initial, automatically determined seed inside the trachea and a conservative threshold; applies region growing and generates a leakage-corrected segmentation; freezes the segmented volume; and shifts the threshold toward a more generous value for the next iteration until a convergence occurs. The method was applied on chest CT scans of fifteen normal non-smoking subjects. Airway segmentation results were compared with manually edited results, and branch level accuracy of the new segmentation method was examined along five standardized segmental airway paths and continuing to two generations beyond the segmental paths. The method successfully detected all branches up to two generations beyond the five segmental airway paths with no visual leakages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castro, M., Fain, S.B., Hoffman, E.A., Gierada, D.S., Erzurum, S.C., Wenzel, S.: Lung imaging in asthmatic patients: the picture is clearer. J. Allergy Clin. Immunol. 128, 467–478 (2011)

    Article  Google Scholar 

  2. Jarjour, N.N., Erzurum, S.C., Bleecker, E.R., Calhoun, W.J., Castro, M., Comhair, S.A., Chung, K.F., Curran-Everett, D., Dweik, R.A., Fain, S.B.: Severe asthma: lessons learned from the national heart, lung, and blood institute severe asthma research program. Am. J. Respir. Crit. Care Med. 185, 356–362 (2012)

    Article  Google Scholar 

  3. Newell Jr., J.D., Sieren, J., Hoffman, E.A.: Development of quantitative CT lung protocols. J. Thorac. Imaging 28, 266–271 (2013)

    Article  Google Scholar 

  4. Coxson, H.O., Leipsic, J., Parraga, G., Sin, D.D.: Using pulmonary imaging to move chronic obstructive pulmonary disease beyond FEV1. Am. J. Respir. Crit. Care Med. 190, 135–144 (2014)

    Article  Google Scholar 

  5. Hoffman, E.A., Lynch, D.A., Barr, R.G., van Beek, E.J., Parraga, G.: Pulmonary CT and MRI phenotypes that help explain chronic pulmonary obstruction disease pathophysiology and outcomes. J. Magn. Reson. Imaging 43, 544–557 (2016)

    Article  Google Scholar 

  6. Tschirren, J., Hoffman, E.A., McLennan, G., Sonka, M.: Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans. IEEE Trans. Med. Imaging 24, 1529–1539 (2005)

    Article  Google Scholar 

  7. Tschirren, J., McLennan, G., Palágyi, K., Hoffman, E.A., Sonka, M.: Matching and anatomical labeling of human airway tree. IEEE Trans. Med. Imaging 24, 1540–1547 (2005)

    Article  Google Scholar 

  8. Smith, B.M., Hoffman, E.A., Rabinowitz, D., Bleecker, E., Christenson, S., Couper, D., Donohue, K.M., Han, M.K., Hansel, N.N., Kanner, R.E., Kleerup, E., Rennard, S., Barr, R.G.: Comparison of spatially matched airways reveals thinner airway walls in COPD. The multi-ethnic study of atherosclerosis (MESA) COPD study and the subpopulations and intermediate outcomes in COPD study (SPIROMICS). Thorax 69, 987–996 (2014)

    Article  Google Scholar 

  9. Couper, D., LaVange, L.M., Han, M., Barr, R.G., Bleecker, E., Hoffman, E.A., Kanner, R., Kleerup, E., Martinez, F.J., Woodruff, P.G., et al.: Design of the subpopulations and intermediate outcomes in COPD study (SPIROMICS). Thorax 69, 492–495 (2014)

    Article  Google Scholar 

  10. Regan, E.A., Hokanson, J.E., Murphy, J.R., Make, B., Lynch, D.A., Beaty, T.H., Curran-Everett, D., Silverman, E.K., Crapo, J.D.: Genetic epidemiology of COPD (COPDGene) study design. COPD: J. Chronic Obstr. Pulm. Dis. 7, 32–43 (2011)

    Article  Google Scholar 

  11. Hoffman, E.A., Jiang, R., Baumhauer, H., Brooks, M.A., Carr, J.J., Detrano, R., Reinhardt, J., Rodriguez, J., Stukovsky, K., Wong, N.D.: Reproducibility and validity of lung density measures from cardiac CT scans-the multi-ethnic study of atherosclerosis (MESA) lung study 1. Acad. Radiol. 16, 689–699 (2009)

    Article  Google Scholar 

  12. Tan, W., Sin, D., Bourbeau, J., Hernandez, P., Chapman, K., Cowie, R., FitzGerald, J., Marciniuk, D., Maltais, F., Buist, A.S., et al.: Characteristics of COPD in never-smokers and ever-smokers in the general population: results from the CanCOLD study. Thorax 70, 822–829 (2015)

    Article  Google Scholar 

  13. Sonka, M., Park, W., Hoffman, E.A.: Rule-based detection of intrathoracic airway trees. IEEE Trans. Med. Imaging 15, 314–326 (1996)

    Article  Google Scholar 

  14. Park, W., Hoffman, E.A., Sonka, M.: Segmentation of intrathoracic airway trees: a fuzzy logic approach. IEEE Trans. Med. Imaging 17, 489–497 (1998)

    Article  Google Scholar 

  15. Tan, K.L., Tanaka, T., Nakamura, H., Shirahata, T., Sugiura, H.: Segmentation of airway trees from multislice CT using fuzzy logic. In: 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, pp. 1614–1617. IEEE (2009)

    Google Scholar 

  16. Mori, K., Hasegawa, J.I., Toriwaki, J.I., Anno, H., Katada, K.: Recognition of bronchus in three-dimensional X-ray CT images with applications to virtualized bronchoscopy system. In: Proceedings of the 13th International Conference Pattern Recognition, vol. 3, pp. 528–532. IEEE (1996)

    Google Scholar 

  17. Summers, R.M., Feng, D.H., Holland, S.M., Sneller, M.C., Shelhamer, J.H.: Virtual bronchoscopy: segmentation method for real-time display. Radiology 200, 857–862 (1996)

    Article  Google Scholar 

  18. Law, T.Y., Heng, P.: Automated extraction of bronchus from 3D CT images of lung based on genetic algorithm and 3D region growing. In: Medical Imaging, pp. 906–916. International Society for Optics and Photonics (2000)

    Google Scholar 

  19. Schlathoelter, T., Lorenz, C., Carlsen, I.C., Renisch, S., Deschamps, T.: Simultaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy. In: SPIE: Medical Imaging, pp. 103–113. International Society Optics Photonics (2002)

    Google Scholar 

  20. Pisupati, C., Wolff, L., Zerhouni, E., Mitzner, W.: Segmentation of 3D pulmonary trees using mathematical morphology. In: Maragos, P., Schafer, R.W., Butt, M.A. (eds.) Mathematical Morphology Applications Image Signal Processing. CIV, vol. 5, pp. 409–416. Springer, Heidelberg (1996). doi:10.1007/978-1-4613-0469-2_48

    Chapter  Google Scholar 

  21. Aykac, D., Hoffman, E.A., McLennan, G., Reinhardt, J.M.: Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Trans. Med. Imaging 22, 940–950 (2003)

    Article  Google Scholar 

  22. Bauer, C., Bischof, H., Beichel, R.: Segmentation of airways based on gradient vector flow. In: International Workshop Pulmonary Image Analysis, Medical Image Computing Computer Assisted Intervention, pp. 191–201. Citeseer (2009)

    Google Scholar 

  23. Saha, P.K., Chaudhuri, B.B.: Detection of 3-D simple points for topology preserving transformations with application to thinning. IEEE Trans. Pattern Anal. Mach. Intell. 16, 1028–1032 (1994)

    Article  Google Scholar 

  24. Swift, R.D., Higgins, W.E., Hoffman, E.A., McLennan, G., Reinhardt, J.M.: Automatic axis generation for 3D virtual-bronchoscopic image assessment. In: SPIE: Medical Imaging, pp. 73–84. International Society for Optics and Photonics (1998)

    Google Scholar 

  25. Reynisson, P.J., Scali, M., Smistad, E., Hofstad, E.F., Leira, H.O., Lindseth, F., Hernes, T.A.N., Amundsen, T., Sorger, H., Langø, T.: Airway segmentation and centerline extraction from thoracic CT-comparison of a new method to state of the art commercialized methods. PloS One 10, e0144282 (2015)

    Article  Google Scholar 

  26. Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. 76, 3–12 (2016)

    Article  Google Scholar 

  27. Fetita, C., Prêteux, F.: Quantitative 3D CT bronchography. In: Proceedings of the IEEE International Symposium Biomedical Imaging, pp. 221–224. IEEE (2002)

    Google Scholar 

  28. Liu, X., Chen, D.Z., Tawhai, M.H., Wu, X., Hoffman, E.A., Sonka, M.: Optimal graph search based segmentation of airway tree double surfaces across bifurcations. IEEE Trans. Med. Imaging 32, 493–510 (2013)

    Article  Google Scholar 

  29. Kiraly, A.P., Higgins, W.E., McLennan, G., Hoffman, E.A., Reinhardt, J.M.: Three-dimensional human airway segmentation methods for clinical virtual bronchoscopy. Acad. Radiol. 9, 1153–1168 (2002)

    Article  Google Scholar 

  30. Xu, Z., Bagci, U., Foster, B., Mansoor, A., Udupa, J.K., Mollura, D.J.: A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT. Med. Image Anal. 24, 1–17 (2015)

    Article  Google Scholar 

  31. Coxson, H.O.: Quantitative computed tomography assessment of airway wall dimensions: current status and potential applications for phenotyping chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 5, 940–945 (2008)

    Article  Google Scholar 

  32. Saha, P.K., Udupa, J.K.: Optimum image thresholding via class uncertainty and region homogeneity. IEEE Trans. Pattern Anal. Mach. Intell. 23, 689–706 (2001)

    Article  Google Scholar 

  33. Ginneken, B., Baggerman, W., Rikxoort, E.M.: Robust segmentation and anatomical labeling of the airway tree from thoracic CT scans. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 219–226. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85988-8_27

    Chapter  Google Scholar 

  34. Saha, P.K., Chaudhuri, B.B.: 3D digital topology under binary transformation with applications. Comput. Vis. Image Underst. 63, 418–429 (1996)

    Article  Google Scholar 

  35. Bullitt, E., Gerig, G., Pizer, S.M., Lin, W., Aylward, S.R.: Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Trans. Med. Imaging 22, 1163–1171 (2003)

    Article  Google Scholar 

  36. Jin, D., Iyer, K.S., Chen, C., Hoffman, E.A., Saha, P.K.: A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths. Pattern Recogn. Lett. 76, 32–40 (2016)

    Article  Google Scholar 

  37. Saha, P.K., Udupa, J.K., Odhner, D.: Scale-based fuzzy connected image segmentation: theory, algorithms, and validation. Comput. Vis. Image Underst. 77, 145–174 (2000)

    Article  Google Scholar 

  38. Saha, P.K., Strand, R., Borgefors, G.: Digital topology and geometry in medical imaging: a survey. IEEE Trans. Med. Imaging 34, 1940–1964 (2015)

    Article  Google Scholar 

  39. Saha, P.K., Wehrli, F.W., Gomberg, B.R.: Fuzzy distance transform: theory, algorithms, and applications. Comput. Vis. Image Underst. 86, 171–190 (2002)

    Article  MATH  Google Scholar 

  40. Jin, D., Chen, C., Saha, P.K.: Filtering non-significant quench points using collision impact in grassfire propagation. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9279, pp. 432–443. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23231-7_39

    Chapter  Google Scholar 

  41. Liu, Y., Jin, D., Li, C., Janz, K.F., Burns, T.L., Torner, J.C., Levy, S.M., Saha, P.K.: A robust algorithm for thickness computation at low resolution and its application to in vivo trabecular bone CT imaging. IEEE Trans. Biomed. Eng. 61, 2057–2069 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grant R01 HL112986.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Ahmed Nadeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nadeem, S.A., Jin, D., Hoffman, E.A., Saha, P.K. (2017). A Novel Iterative Method for Airway Tree Segmentation from CT Imaging Using Multiscale Leakage Detection. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10118. Springer, Cham. https://doi.org/10.1007/978-3-319-54526-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54526-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54525-7

  • Online ISBN: 978-3-319-54526-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics