Skip to main content

Dense Residual Pyramid Networks for Salient Object Detection

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10118))

Included in the following conference series:

  • 3562 Accesses

Abstract

We introduce a coarse-to-fine method for salient object detection. In fully convolutional networks (FCN), pooling operation generates downsampled feature maps, while full size estimation is required for salient objet detection. Our Dense Residual Pyramid Networks (DRPN) attends to generating high-resolution and high-quality results. However, in order to provide enough local information, we extract extra local features from pre-trained networks. Finally, the proposed dense residual blocks learn to merge all the information and generate full size saliency maps.

In our work, the thought of reconstructing Gaussian pyramids is first introduced into the frameworks of convolutional neural networks. We employ dense residual learning to learn residual maps. We hope these feature maps can be used to refine the upsampled feature maps, as Laplacian images can be used to reconstruct images in Gaussian pyramids.

Experiments show that our DRPN has huge improvement over previous state-of-the-art methods on all the datasets. Especially, our DRPN outperforms previous state-of-the-art over 11.6% on ECSSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han, S.H., Jung, G.D., Lee, S.Y., Hong, Y.P., Lee, S.H.: Automatic salient object segmentation using saliency map and color segmentation. J. Cent. South Univ. 20, 2407–2413 (2013)

    Article  Google Scholar 

  2. Sun, J., Lu, H., Li, S.: Saliency detection based on integration of boundary and soft-segmentation. In: 2012 19th IEEE International Conference on Image Processing (2012)

    Google Scholar 

  3. Klein, D.A., Frintrop, S.: Center-surround divergence of feature statistics for salient object detection. In: 2011 International Conference on Computer Vision (2011)

    Google Scholar 

  4. Tong, N., Lu, H., Zhang, Y., Ruan, X.: Salient object detection via global and local cues. Pattern Recogn. 48, 3258–3267 (2015)

    Article  Google Scholar 

  5. He, S., Lau, R.W.H.: Saliency detection with flash and no-flash image pairs. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 110–124. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10578-9_8

    Google Scholar 

  6. Zhao, R., Ouyang, W., Li, H., Wang, X.: Saliency detection by multi-context deep learning. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  7. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33, 353–367 (2011)

    Article  Google Scholar 

  8. Huaizu, J., Jingdong, W., Zejian, Y., Yang, W., Nanning, Z., Shipeng, L.: Salient object detection: a discriminative regional feature integration approach. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  9. Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  10. Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15555-0_27

    Chapter  Google Scholar 

  11. Khuwuthyakorn, P., Robles-Kelly, A., Zhou, J.: Object of interest detection by saliency learning. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 636–649. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15552-9_46

    Chapter  Google Scholar 

  12. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)

    Article  Google Scholar 

  13. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1915–1929 (2013)

    Article  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc., New York (2012)

    Google Scholar 

  15. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  16. He, S., Lau, R.W.H., Liu, W., Huang, Z., Yang, Q.: SuperCNN: a superpixelwise convolutional neural network for salient object detection. Int. J. Comput. Vis. 115, 330–344 (2015)

    Article  MathSciNet  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  18. Pinheiro, P., Collobert, R.: Recurrent convolutional neural networks for scene labeling. In: International Conference on Machine Learning, pp. 82–90 (2014)

    Google Scholar 

  19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  20. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1520–1528 (2015)

    Google Scholar 

  21. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)

    Article  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  23. Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37, 569–582 (2015)

    Article  Google Scholar 

  24. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  25. Batra, D., Kowdle, A., Parikh, D., Luo, J., Chen, T.: iCoseg: interactive co-segmentation with intelligent scribble guidance. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  26. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  27. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  28. Li, J., Levine, M.D., An, X., Xu, X., He, H.: Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans. Pattern Anal. Mach. Intell. 35, 996–1010 (2013)

    Article  Google Scholar 

  29. Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  30. Li, C., Yuan, Y., Cai, W., Xia, Y., Feng, D.D.: Robust saliency detection via regularized random walks ranking. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant Nos: 61273366 and the program of introducing talents of discipline to university under grant no: B13043 and the National Key Technology R&D Program: 2015BAH31F01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, Z., Jiang, P., Wang, F. (2017). Dense Residual Pyramid Networks for Salient Object Detection. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10118. Springer, Cham. https://doi.org/10.1007/978-3-319-54526-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54526-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54525-7

  • Online ISBN: 978-3-319-54526-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics