Abstract
We introduce a coarse-to-fine method for salient object detection. In fully convolutional networks (FCN), pooling operation generates downsampled feature maps, while full size estimation is required for salient objet detection. Our Dense Residual Pyramid Networks (DRPN) attends to generating high-resolution and high-quality results. However, in order to provide enough local information, we extract extra local features from pre-trained networks. Finally, the proposed dense residual blocks learn to merge all the information and generate full size saliency maps.
In our work, the thought of reconstructing Gaussian pyramids is first introduced into the frameworks of convolutional neural networks. We employ dense residual learning to learn residual maps. We hope these feature maps can be used to refine the upsampled feature maps, as Laplacian images can be used to reconstruct images in Gaussian pyramids.
Experiments show that our DRPN has huge improvement over previous state-of-the-art methods on all the datasets. Especially, our DRPN outperforms previous state-of-the-art over 11.6% on ECSSD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Han, S.H., Jung, G.D., Lee, S.Y., Hong, Y.P., Lee, S.H.: Automatic salient object segmentation using saliency map and color segmentation. J. Cent. South Univ. 20, 2407–2413 (2013)
Sun, J., Lu, H., Li, S.: Saliency detection based on integration of boundary and soft-segmentation. In: 2012 19th IEEE International Conference on Image Processing (2012)
Klein, D.A., Frintrop, S.: Center-surround divergence of feature statistics for salient object detection. In: 2011 International Conference on Computer Vision (2011)
Tong, N., Lu, H., Zhang, Y., Ruan, X.: Salient object detection via global and local cues. Pattern Recogn. 48, 3258–3267 (2015)
He, S., Lau, R.W.H.: Saliency detection with flash and no-flash image pairs. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 110–124. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10578-9_8
Zhao, R., Ouyang, W., Li, H., Wang, X.: Saliency detection by multi-context deep learning. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33, 353–367 (2011)
Huaizu, J., Jingdong, W., Zejian, Y., Yang, W., Nanning, Z., Shipeng, L.: Salient object detection: a discriminative regional feature integration approach. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (2013)
Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15555-0_27
Khuwuthyakorn, P., Robles-Kelly, A., Zhou, J.: Object of interest detection by saliency learning. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 636–649. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15552-9_46
LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)
Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1915–1929 (2013)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc., New York (2012)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014)
He, S., Lau, R.W.H., Liu, W., Huang, Z., Yang, Q.: SuperCNN: a superpixelwise convolutional neural network for salient object detection. Int. J. Comput. Vis. 115, 330–344 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)
Pinheiro, P., Collobert, R.: Recurrent convolutional neural networks for scene labeling. In: International Conference on Machine Learning, pp. 82–90 (2014)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1520–1528 (2015)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37, 569–582 (2015)
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009)
Batra, D., Kowdle, A., Parikh, D., Luo, J., Chen, T.: iCoseg: interactive co-segmentation with intelligent scribble guidance. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (2013)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (2013)
Li, J., Levine, M.D., An, X., Xu, X., He, H.: Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans. Pattern Anal. Mach. Intell. 35, 996–1010 (2013)
Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014)
Li, C., Yuan, Y., Cai, W., Xia, Y., Feng, D.D.: Robust saliency detection via regularized random walks ranking. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Acknowledgement
This work was supported by the National Natural Science Foundation of China under Grant Nos: 61273366 and the program of introducing talents of discipline to university under grant no: B13043 and the National Key Technology R&D Program: 2015BAH31F01.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Wang, Z., Jiang, P., Wang, F. (2017). Dense Residual Pyramid Networks for Salient Object Detection. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10118. Springer, Cham. https://doi.org/10.1007/978-3-319-54526-4_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-54526-4_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54525-7
Online ISBN: 978-3-319-54526-4
eBook Packages: Computer ScienceComputer Science (R0)