Skip to main content

Image Patch Matching Using Convolutional Descriptors with Euclidean Distance

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10118))

Included in the following conference series:

  • 3639 Accesses

Abstract

In this work we propose a neural network based image descriptor suitable for image patch matching, which is an important task in many computer vision applications. Our approach is influenced by recent success of deep convolutional neural networks (CNNs) in object detection and classification tasks. We develop a model which maps the raw input patch to a low dimensional feature vector so that the distance between representations is small for similar patches and large otherwise. As a distance metric we utilize \(L_2\) norm, i.e. Euclidean distance, which is fast to evaluate and used in most popular hand-crafted descriptors, such as SIFT. According to the results, our approach outperforms state-of-the-art \(L_2\)-based descriptors and can be considered as a direct replacement of SIFT. In addition, we conducted experiments with batch normalization and histogram equalization as a preprocessing method of the input data. The results confirm that these techniques further improve the performance of the proposed descriptor. Finally, we show promising preliminary results by appending our CNNs with recently proposed spatial transformer networks and provide a visualisation and interpretation of their impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source code and the model will be made available upon publication.

References

  1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  2. Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: Proceedings of Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  3. Hua, G., Brown, M., Winder, S.: Discriminant learning of local image descriptors. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2010)

    Google Scholar 

  4. Trzcinski, T., Christoudias, C.M., Lepetit, V., Fua, P.: Learning image descriptors with the boosting-trick. In: NIPS, pp. 278–286 (2012)

    Google Scholar 

  5. Trzcinski, T., Christoudias, M., Fua, P., Lepetit, V.: Boosting binary keypoint descriptors. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013, pp. 2874–2881. IEEE Computer Society (2013)

    Google Scholar 

  6. Simonyan, K., Vedaldi, A., Zisserman, A.: Learning local feature descriptors using convex optimisation. IEEE Trans. Pattern Anal. Mach. Intell. (2014)

    Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105 (2012)

    Google Scholar 

  8. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  9. Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: Matchnet: unifying feature and metric learning for patch-based matching. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  10. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. Comput. Vis. Pattern Recogn. 1, 539–546 (2005)

    Google Scholar 

  11. Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for community photo collections. In: Proceedings of the 11th International Conference on Computer Vision (ICCV 2007), pp. 265–270. IEEE (2007)

    Google Scholar 

  12. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vis. 80, 189–210 (2008)

    Article  Google Scholar 

  13. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. Adv. Neural Inf. Process. Syst. 28, 2017–2025 (2015)

    Google Scholar 

  14. Strecha, C., Bronstein, A., Bronstein, M., Fua, P.: LDAHash: improved matching with smaller descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 34, 66–78 (2012)

    Article  Google Scholar 

  15. Jahrer, M., Grabner, M., Bischof, H.: Learned local descriptors for recognition and matching. In: Computer Vision Winter Workshop (2008)

    Google Scholar 

  16. Osendorfer, C., Bayer, J., Urban, S., Smagt, P.: Convolutional neural networks learn compact local image descriptors. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8228, pp. 624–630. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42051-1_77

    Chapter  Google Scholar 

  17. Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare image patches. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  18. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) (2013)

    Google Scholar 

  19. Lin, T.Y., Cui, Y., Belongie, S., Hays, J.: Learning deep representations for ground-to-aerial geolocalization. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  20. Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: International Conference on Computer Vision (2015)

    Google Scholar 

  21. Mobahi, H., Collobert, R., Weston, J.: Deep learning from temporal coherence in video. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 737–744. ACM (2009)

    Google Scholar 

  22. Hadsell, R., Sumit, C., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. Comput. Vis. Pattern Recogn. 2, 1735–6919 (2006)

    Google Scholar 

  23. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167 (2015)

    Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  25. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)

    Article  Google Scholar 

  26. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iaroslav Melekhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Melekhov, I., Kannala, J., Rahtu, E. (2017). Image Patch Matching Using Convolutional Descriptors with Euclidean Distance. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10118. Springer, Cham. https://doi.org/10.1007/978-3-319-54526-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54526-4_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54525-7

  • Online ISBN: 978-3-319-54526-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics