Skip to main content

Classification of Lung Nodule Malignancy Risk on Computed Tomography Images Using Convolutional Neural Network: A Comparison Between 2D and 3D Strategies

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10118))

Included in the following conference series:

Abstract

Computed tomography (CT) is the preferred method for non-invasive lung cancer screening. Early detection of potentially malignant lung nodules will greatly improve patient outcome, where an effective computer-aided diagnosis (CAD) system may play an important role. Two-dimensional convolutional neural network (CNN) based CAD methods have been proposed and well-studied to extract hierarchical and discriminative features for classifying lung nodules. It is often questioned if the transition to 3D will be a key to major step forward in performance. In this paper, we propose a novel 3D CNN on the 1018-patient Lung Image Database Consortium collection (LIDC-IDRI). To the best of our knowledge, this is the first time to directly compare three different strategies: slice-level 2D CNN, nodule-level 2D CNN and nodule-level 3D CNN. Using comparable network architectures, we achieved nodule malignancy risk classification accuracies of \(86.7\%\), \(87.3\%\) and \(87.4\%\) against the personal opinion of four radiologists, respectively. In the experiments, our results and analyses demonstrates that the nodule-level 2D CNN can better capture the z-direction features of lung nodule than a slice-level 2D approach, whereas nodule-level 3D CNN can further integrate nodule-level features as well as context features from all three directions in a 3D patch in a limited extent, resulting in a slightly better performance than the other two strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30 (2016)

    Article  Google Scholar 

  2. Stewart, B., Wild, C.P., et al.: World cancer report 2014. World (2015)

    Google Scholar 

  3. Team, N., et al.: Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395 (2011)

    Article  Google Scholar 

  4. Erasmus, J.J., Gladish, G.W., Broemeling, L., Sabloff, B.S., Truong, M.T., Herbst, R.S., Munden, R.F.: Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J. Clin. Oncol. 21, 2574–2582 (2003)

    Article  Google Scholar 

  5. Swensen, S.J., Jett, J.R., Hartman, T.E., Midthun, D.E., Mandrekar, S.J., Hillman, S.L., Sykes, A.M., Aughenbaugh, G.L., Bungum, A.O., Allen, K.L.: CT screening for lung cancer: five-year prospective experience 1. Radiology 235, 259–265 (2005)

    Article  Google Scholar 

  6. Armato, S.G., McLennan, G., Bidaut, L., McNitt-Gray, M.F., Meyer, C.R., Reeves, A.P., Zhao, B., Aberle, D.R., Henschke, C.I., Hoffman, E.A., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on ct scans. Med. Phys. 38, 915–931 (2011)

    Article  Google Scholar 

  7. Rubin, G.D., Lyo, J.K., Paik, D.S., Sherbondy, A.J., Chow, L.C., Leung, A.N., Mindelzun, R., Schraedley-Desmond, P.K., Zinck, S.E., Naidich, D.P., et al.: Pulmonary nodules on multi-detector row CT scans: performance comparison of radiologists and computer-aided detection 1. Radiology 234, 274–283 (2005)

    Article  Google Scholar 

  8. Furuya, K., Murayama, S., Soeda, H., Murakami, J., Ichinose, Y., Yauuchi, H., Katsuda, Y., Koga, M., Masuda, K.: New classification of small pulmonary nodules by margin characteristics on highresolution CT. Acta Radiol. 40, 496–504 (1999)

    Article  Google Scholar 

  9. Gurney, J.W., Swensen, S.J.: Solitary pulmonary nodules: determining the likelihood of malignancy with neural network analysis. Radiology 196, 823–829 (1995)

    Article  Google Scholar 

  10. Kawata, Y., Niki, N., Ohmatsu, H., Kusumoto, M., Kakinuma, R., Mori, K., Nishiyama, H., Eguchi, K., Kaneko, M., Moriyama, N.: Computerized analysis of 3-d pulmonary nodule images in surrounding and internal structure feature spaces. In: Proceedings of 2001 International Conference on Image Processing, vol. 2, pp. 889–892. IEEE (2001)

    Google Scholar 

  11. Kido, S., Kuriyama, K., Higashiyama, M., Kasugai, T., Kuroda, C.: Fractal analysis of internal and peripheral textures of small peripheral bronchogenic carcinomas in thin-section computed tomography: comparison of bronchioloalveolar cell carcinomas with nonbronchioloalveolar cell carcinomas. J. Comput. Assist. Tomogr. 27, 56–61 (2003)

    Article  Google Scholar 

  12. Shiraishi, J., Abe, H., Engelmann, R., Aoyama, M., MacMahon, H., Doi, K.: Computer-aided diagnosis to distinguish benign from malignant solitary pulmonary nodules on radiographs: ROC analysis of radiologists’ performance - initial experience 1. Radiology 227, 469–474 (2003)

    Article  Google Scholar 

  13. Armato, S.G., Altman, M.B., Wilkie, J., Sone, S., Li, F., Doi, K., Roy, A.S.: Automated lung nodule classification following automated nodule detection on CT: a serial approach. Med. Phys. 30, 1188–1197 (2003)

    Article  Google Scholar 

  14. Mori, K., Niki, N., Kondo, T., Kamiyama, Y., Kodama, T., Kawada, Y., Moriyama, N.: Development of a novel computer-aided diagnosis system for automatic discrimination of malignant from benign solitary pulmonary nodules on thin-section dynamic computed tomography. J. Comput. Assist. Tomogr. 29, 215–222 (2005)

    Article  Google Scholar 

  15. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition 2009, CVPR 2009, pp. 1794–1801. IEEE (2009)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  17. Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 588–599. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19992-4_46

    Chapter  Google Scholar 

  18. Kumar, D., Wong, A., Clausi, D.A.: Lung nodule classification using deep features in CT images. In: 2015 12th Conference on Computer and Robot Vision (CRV), pp. 133–138. IEEE (2015)

    Google Scholar 

  19. Hua, K.L., Hsu, C.H., Hidayati, S.C., Cheng, W.H., Chen, Y.J.: Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Target Ther. 8, 2015–2022 (2015)

    Google Scholar 

  20. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)

    Google Scholar 

  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: C3D: generic features for video analysis. CoRR, abs/1412.0767 2 7 (2014)

    Google Scholar 

  23. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 221–231 (2013)

    Article  Google Scholar 

  24. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment for machine learning (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yan, X. et al. (2017). Classification of Lung Nodule Malignancy Risk on Computed Tomography Images Using Convolutional Neural Network: A Comparison Between 2D and 3D Strategies. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10118. Springer, Cham. https://doi.org/10.1007/978-3-319-54526-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54526-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54525-7

  • Online ISBN: 978-3-319-54526-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics