Abstract
We provide a first security evaluation of LPN-based implementations against fault attacks. Our main result is to show that such implementations inherently have good features to resist these attacks. First, some prominent fault models (e.g. where an adversary flips bits in an implementation) are ineffective against LPN. Second, attacks taking advantage of more advanced fault models (e.g. where an adversary sets bits in an implementation) require significantly more samples than against standard symmetric cryptographic primitives such as block ciphers. Furthermore, the sampling complexity of these attacks strongly suffers from inaccurate fault insertion. Combined with the previous observation that the inner products computed in LPN implementations have an interesting algebraic structure for side-channel resistance via masking, these results therefore suggest LPN-based primitives as interesting candidates for physically secure implementations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Intuitively, the independence assumption is reasonable since what we require is that for each key candidate \(\mathbf k ^{*}\) there exists enough plaintexts belonging to \(\mathbb {Z}^d_2 \setminus V(\langle \mathbf x \vert \mathbf k \oplus \mathbf k ^{*}\rangle )\), with \(V(\langle \mathbf x \vert \mathbf k \oplus \mathbf k ^{*}\rangle )\) the hyperplane defined by the equation \(\langle \mathbf x \vert \mathbf k \oplus \mathbf k ^{*}\rangle =0\).
- 2.
Defined as the distance from the uniform probability \(\frac{1}{2}\).
References
Balasch, J., Faust, S., Gierlichs, B.: Inner product masking revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 486–510. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_19
Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval and Johansson [29], pp. 719–737 (2012)
Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11), 3056–3076 (2012)
Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). doi:10.1007/BFb0052259
Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2_24
Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. In: Frances Yao, F., Luks, E.M. (eds.), Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, 21–23 May 2000, Portland, OR, USA, pp. 435–440. ACM (2000)
Bogos, S., Tramèr, F., Vaudenay, S.: On solving lPN using BKW and variants. IACR Cryptology ePrint Archive 2015:49 (2015)
Bringer, J., Chabanne, H., Dottax, E.: Hb\({}^{\text{++}}\): a lightweight authentication protocol secure against some attacks. In: Second International Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Computing (SecPerU 2006), 29 June 2006, Lyon, France, pp. 28–33 (2006)
Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5_3
Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In: Pointcheval and Johansson [29], pp. 355–374 (2012)
Duc, A., Vaudenay, S.: HELEN: a public-key cryptosystem based on the LPN and the decisional minimal distance problems. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 107–126. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38553-7_6
Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 702–721. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0_38
Gaspar, L., Leurent, G., Standaert, F.-X.: Hardware implementation and side-channel analysis of lapin. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 206–226. Springer, Cham (2014). doi:10.1007/978-3-319-04852-9_11
Gilbert, H., Robshaw, M., Sibert, H.: Active attack against HB+: a provably secure lightweight authentication protocol. Electron. Lett. 41(21), 1169–1170 (2005)
Gilbert, H., Robshaw, M.J.B., Seurin, Y.: Hb#: increasing the security and efficiency of Hb\(^{*}\). In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 361–378. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3_21
Gilbert, H., Robshaw, M.J.B., Seurin, Y.: How to encrypt with the LPN problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 679–690. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3_55
Giraud, C., Thiebeauld, H.: A survey on fault attacks. In: Quisquater, J.-J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) Smart Card Research and Advanced Applications VI. IFIP, vol. 153, pp. 159–176. Springer, Heidelberg (2008). doi:10.1007/1-4020-8147-2_11
Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: how large is the gap for aes? J. Cryptographic Eng. 4(1), 47–57 (2014)
Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 1–20. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8_1
Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: an efficient authentication protocol based on ring-LPN. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34047-5_20
Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001). doi:10.1007/3-540-45682-1_4
Joye, M., Tunstall, M. (eds.): Fault Analysis in Cryptography. Information Security and Cryptography. Springer, Heidelberg (2012)
Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005). doi:10.1007/11535218_18
Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient authentication from hard learning problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 7–26. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4_3
Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006). doi:10.1007/11832072_24
Medwed, M., Standaert, F.-X.: Extractors against side-channel attacks: weak or strong? J. Cryptographic. Engineering 1(3), 231–241 (2011)
Pietrzak, K.: Cryptography from learning parity with noise. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 99–114. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27660-6_9
Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN structures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45238-6_7
Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237. Springer, Heidelberg (2012)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory of Computing, 22–24 May 2005, Baltimore, MD, USA, pp. 84–93. ACM (2005)
Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key enumeration algorithm and its application to side-channel attacks. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35999-6_25
Acknowledgments
François-Xavier Standaert is a research associate of the Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been funded in parts by the ERC project 280141 and by the ARC project NANOSEC.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Berti, F., Standaert, FX. (2017). An Analysis of the Learning Parity with Noise Assumption Against Fault Attacks. In: Lemke-Rust, K., Tunstall, M. (eds) Smart Card Research and Advanced Applications. CARDIS 2016. Lecture Notes in Computer Science(), vol 10146. Springer, Cham. https://doi.org/10.1007/978-3-319-54669-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-54669-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54668-1
Online ISBN: 978-3-319-54669-8
eBook Packages: Computer ScienceComputer Science (R0)